IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p3705-d524696.html
   My bibliography  Save this article

A Model for Developing Existing Ports Considering Economic Impact and Network Connectivity

Author

Listed:
  • Veterina Nosadila Riaventin

    (Department of Industrial Engineering, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia)

  • Sofyan Dwi Cahyo

    (Kuala Tanjung Multipurpose Terminal, Jl. Akses Pelabuhan Kuala Tanjung No. 1, Batu Bara 21257, Indonesia)

  • Ivan Kristianto Singgih

    (Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology, Daehak Road, Daejeon 34141, Korea)

Abstract

This study discusses the problem of determining which container port should be developed within an existing network and when this should be carried out. A case study of Indonesia’s port network is presented, where several new ports are to be improved to ensure smooth interisland transportation flows of goods. The effects of the investment on economic consequences and increased network connectivity are assessed. When improving the ports, we consider that the available budget limits the investment. The network connectivity is evaluated by considering the number of reachable ports from the developed ports or transportation time required from other ports within the same port cluster. Based on our knowledge, our study is the first one that discusses the investment problem in multiple container ports under single management, as well as its effects regarding the increase in container flows. The problem is introduced and three mathematical models are proposed and used to solve a real problem. The results show that different models have different improved aspects of container transportation flows—e.g., a balanced improvement of the whole port network (Model 2) and appropriate investment priority for port clusters (Model 3).

Suggested Citation

  • Veterina Nosadila Riaventin & Sofyan Dwi Cahyo & Ivan Kristianto Singgih, 2021. "A Model for Developing Existing Ports Considering Economic Impact and Network Connectivity," Sustainability, MDPI, vol. 13(7), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3705-:d:524696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/3705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/3705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert, Marion & Bergez, Jacques-Eric & Thomas, Alban, 2018. "A stochastic dynamic programming approach to analyze adaptation to climate change – Application to groundwater irrigation in India," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1033-1045.
    2. Balliauw, Matteo & Kort, Peter M. & Zhang, Anming, 2019. "Capacity investment decisions of two competing ports under uncertainty: A strategic real options approach," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 249-264.
    3. Dimitris Bertsimas & Christopher Darnell & Robert Soucy, 1999. "Portfolio Construction Through Mixed-Integer Programming at Grantham, Mayo, Van Otterloo and Company," Interfaces, INFORMS, vol. 29(1), pages 49-66, February.
    4. Jin, Jian Gang & Lee, Der-Horng & Hu, Hao, 2015. "Tactical berth and yard template design at container transshipment terminals: A column generation based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 168-184.
    5. Olcay Polat & Hans-Otto Günther & Osman Kulak, 2014. "The feeder network design problem: Application to container services in the Black Sea region," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 16(3), pages 343-369, September.
    6. Tu, Ningwen & Adiputranto, Dimas & Fu, Xiaowen & Li, Zhi-Chun, 2018. "Shipping network design in a growth market: The case of Indonesia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 117(C), pages 108-125.
    7. Kim, Kap Hwan & Moon, Kyung Chan, 2003. "Berth scheduling by simulated annealing," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 541-560, July.
    8. Jiaomin Liu & Tong Guo & Yue Wang & Yonggang Li & Shanshan Xu, 2020. "Multi-Technical Flexibility Retrofit Planning of Thermal Power Units Considering High Penetration Variable Renewable Energy: The Case of China," Sustainability, MDPI, vol. 12(9), pages 1-16, April.
    9. Giacomo Di Ruocco & Antonio Nesticò, 2018. "Archaeological Site Conservation and Enhancement: An Economic Evaluation Model for the Selection of Investment Projects," Sustainability, MDPI, vol. 10(11), pages 1-13, October.
    10. Zheng, Jianfeng & Meng, Qiang & Sun, Zhuo, 2015. "Liner hub-and-spoke shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 32-48.
    11. Konings, Rob & Kreutzberger, Ekki & Maraš, Vladislav, 2013. "Major considerations in developing a hub-and-spoke network to improve the cost performance of container barge transport in the hinterland: the case of the port of Rotterdam," Journal of Transport Geography, Elsevier, vol. 29(C), pages 63-73.
    12. Shiyuan Zheng & Rudy R. Negenborn, 2017. "Terminal investment timing decisions in a competitive setting with uncertainty using a real option approach," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(3), pages 392-411, April.
    13. Bahana Wiradanti & Stephen Pettit & Andrew Potter & Wessam Abouarghoub, 2020. "Willingness to invest in peripheral ports: perceptions of Indonesian port and maritime industry stakeholders," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 699-714, December.
    14. Chen, Dongxu & Yang, Zhongzhen, 2018. "Systematic optimization of port clusters along the Maritime Silk Road in the context of industry transfer and production capacity constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 174-189.
    15. Chen, Kang & Xu, Shihe & Haralambides, Hercules, 2020. "Determining hub port locations and feeder network designs: The case of China-West Africa trade," Transport Policy, Elsevier, vol. 86(C), pages 9-22.
    16. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2010. "An integer programming dynamic farm-household model to evaluate the impact of agricultural policy reforms on farm investment behaviour," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1130-1139, December.
    17. Jiangbo Xing & Ming Zhong, 2017. "A reactive container rerouting model for container flow recovery in a hub-and-spoke liner shipping network," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(6), pages 744-760, August.
    18. Christiansen, Marielle & Hellsten, Erik & Pisinger, David & Sacramento, David & Vilhelmsen, Charlotte, 2020. "Liner shipping network design," European Journal of Operational Research, Elsevier, vol. 286(1), pages 1-20.
    19. Trung-Hieu Tran & Yong Mao & Peer-Olaf Siebers, 2019. "Optimising Decarbonisation Investment for Firms towards Environmental Sustainability," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    20. Angeloudis, Panagiotis & Greco, Luciano & Bell, Michael G.H., 2016. "Strategic maritime container service design in oligopolistic markets," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 22-37.
    21. Ridier, Aude & Chaib, Karim & Roussy, Caroline, 2016. "A Dynamic Stochastic Programming model of crop rotation choice to test the adoption of long rotation under price and production risks," European Journal of Operational Research, Elsevier, vol. 252(1), pages 270-279.
    22. Yanling Chu & Xiaoju Zhang & Zhongzhen Yang, 2017. "Multiple quay cranes scheduling for double cycling in container terminals," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
    23. Zheng, Jianfeng & Yang, Dong, 2016. "Hub-and-spoke network design for container shipping along the Yangtze River," Journal of Transport Geography, Elsevier, vol. 55(C), pages 51-57.
    24. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    25. Srinivas Bollapragada & Brandon Owens & Steve Taub, 2011. "Practice Summaries: An Optimization Model to Support Renewable Energy Investment Decisions," Interfaces, INFORMS, vol. 41(4), pages 394-395, August.
    26. Nile W. Hatch & David C. Mowery, 1998. "Process Innovation and Learning by Doing in Semiconductor Manufacturing," Management Science, INFORMS, vol. 44(11-Part-1), pages 1461-1477, November.
    27. Domenico Gattuso & Margherita Malara & Gian Carla Cassone, 2020. "Planning and Simulation of Intermodal Freight Transport on International Networks. Hub and Spoke System in Euro-Mediterranean Area," Sustainability, MDPI, vol. 12(3), pages 1-14, January.
    28. Tovar, Beatriz & Hernández, Rubén & Rodríguez-Déniz, Héctor, 2015. "Container port competitiveness and connectivity: The Canary Islands main ports case," Transport Policy, Elsevier, vol. 38(C), pages 40-51.
    29. Ivan Kristianto Singgih & Onyu Yu & Byung-In Kim & Jeongin Koo & Seungdoe Lee, 2020. "Production scheduling problem in a factory of automobile component primer painting," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1483-1496, August.
    30. Wang, Grace W.Y. & Zeng, Qingcheng & Li, Kevin & Yang, Jinglei, 2016. "Port connectivity in a logistic network: The case of Bohai Bay, China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 341-354.
    31. Saberi, Sara & Cruz, Jose M. & Sarkis, Joseph & Nagurney, Anna, 2018. "A competitive multiperiod supply chain network model with freight carriers and green technology investment option," European Journal of Operational Research, Elsevier, vol. 266(3), pages 934-949.
    32. Yibin Xiao & Adolf K.Y. Ng & Hangjun Yang & Xiaowen Fu, 2012. "An Analysis of the Dynamics of Ownership, Capacity Investments and Pricing Structure of Ports," Transport Reviews, Taylor & Francis Journals, vol. 32(5), pages 629-652, June.
    33. Yang Lin & Longzhong Yan & Ying-Ming Wang, 2019. "Performance Evaluation and Investment Analysis for Container Port Sustainable Development in China: An Inverse DEA Approach," Sustainability, MDPI, vol. 11(17), pages 1-13, August.
    34. Weifen Zhuang & Meifeng Luo & Xiaowen Fu, 2014. "A game theory analysis of port specialization-implications to the Chinese port industry," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(3), pages 268-287, May.
    35. William F. Hamilton & Michael A. Moses, 1973. "An Optimization Model for Corporate Financial Planning," Operations Research, INFORMS, vol. 21(3), pages 677-692, June.
    36. Michael K. Fung, 2009. "Does trigger point mechanism create monopoly power for Hong Kong container terminals?," Maritime Policy & Management, Taylor & Francis Journals, vol. 36(4), pages 325-336, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Dong & Yuhao Li & Xinglu Xu & Yaping Zha, 2022. "A Practical Accessibility Evaluation Method for Port-Centric Coal Transportation Chains: Considering the Environment and Operational Adaptability," Sustainability, MDPI, vol. 14(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Shiyuan & Jiang, Changmin & Fu, Xiaowen, 2021. "Investment competition on dedicated terminals under demand ambiguity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    2. Peng, Peng & Yang, Yu & Cheng, Shifen & Lu, Feng & Yuan, Zimu, 2019. "Hub-and-spoke structure: Characterizing the global crude oil transport network with mass vessel trajectories," Energy, Elsevier, vol. 168(C), pages 966-974.
    3. Qu, Chenrui & Wang, Grace W.Y. & Zeng, Qingcheng, 2017. "Modelling port subsidy policies considering pricing decisions of feeder carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 115-133.
    4. Wang, Mei-Ru & Li, Zhi-Chun & Fu, Xiaowen & Xiong, Yi, 2024. "Revenue-sharing in the alliance of inland river and sea carriers: Formulation and a case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    5. Wang, Junjin & Liu, Jiaguo & Wang, Fan & Yue, Xiaohang, 2021. "Blockchain technology for port logistics capability: Exclusive or sharing," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 347-392.
    6. Guo, Liquan & Ng, Adolf K.Y. & Jiang, Changmin & Long, Jiancheng, 2021. "Stepwise capacity integration in port cluster under uncertainty and congestion," Transport Policy, Elsevier, vol. 112(C), pages 94-113.
    7. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    8. Zhen, Lu & Shen, Tao & Wang, Shuaian & Yu, Shucheng, 2016. "Models on ship scheduling in transshipment hubs with considering bunker cost," International Journal of Production Economics, Elsevier, vol. 173(C), pages 111-121.
    9. Zhu, Shengda & Fu, Xiaowen & Bell, Michael G.H., 2021. "Container shipping line port choice patterns in East Asia the effects of port affiliation and spatial dependence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    10. Zheng, Jianfeng & Yang, Dong, 2016. "Hub-and-spoke network design for container shipping along the Yangtze River," Journal of Transport Geography, Elsevier, vol. 55(C), pages 51-57.
    11. Martínez-Moya, Julián & Feo-Valero, María, 2020. "Measuring foreland container port connectivity disaggregated by destination markets: An index for Short Sea Shipping services in Spanish ports," Journal of Transport Geography, Elsevier, vol. 89(C).
    12. Zhang, Qiang & Pu, Shunhao & Luo, Lihua & Liu, Zhichao & Xu, Jie, 2022. "Revisiting important ports in container shipping networks: A structural hole-based approach," Transport Policy, Elsevier, vol. 126(C), pages 239-248.
    13. Tao, Yi & Lee, Chung-Yee, 2015. "Joint planning of berth and yard allocation in transshipment terminals using multi-cluster stacking strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 34-50.
    14. Jacob, Jagan, 2020. "Should competing firms cooperate to reduce congestion?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    15. Mulder, J. & Dekker, R., 2016. "Optimization in container liner shipping," Econometric Institute Research Papers EI2016-05, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Sushil Gupta & Hossein Rikhtehgar Berenji & Manish Shukla & Nagesh N. Murthy, 2023. "Opportunities in farming research from an operations management perspective," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1577-1596, June.
    17. Magnus Bolstad Holm & Carl Axel Benjamin Medbøen & Kjetil Fagerholt & Peter Schütz, 2019. "Shortsea liner network design with transhipments at sea: a case study from Western Norway," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 598-619, September.
    18. Yang, Zhongzhen & Sun, Yu & Lee, Paul Tae-Woo, 2020. "Impact of the development of the China-Europe Railway Express – A case on the Chongqing international logistics center," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 244-261.
    19. Zheng, Shiyuan & Wang, Kun & Chan, Felix T.S. & Fu, Xiaowen & Li, Zhi-Chun, 2022. "Subsidy on transport adaptation investment-modeling decisions under incomplete information and ambiguity," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 103-129.
    20. Xiao, Yi-bin & Fu, Xiaowen & Ng, Adolf K.Y. & Zhang, Anming, 2015. "Port investments on coastal and marine disasters prevention: Economic modeling and implications," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 202-221.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3705-:d:524696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.