IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11487-d914082.html
   My bibliography  Save this article

Predictive Analysis and Wine-Grapes Disease Risk Assessment Based on Atmospheric Parameters and Precision Agriculture Platform

Author

Listed:
  • Ioana Marcu

    (Telecommunications Department, University Politehnica of Bucharest, 61071 Bucharest, Romania)

  • Ana-Maria Drăgulinescu

    (Telecommunications Department, University Politehnica of Bucharest, 61071 Bucharest, Romania)

  • Cristina Oprea

    (Telecommunications Department, University Politehnica of Bucharest, 61071 Bucharest, Romania)

  • George Suciu

    (R&D Department, Beia Consult International, 41386 Bucharest, Romania)

  • Cristina Bălăceanu

    (R&D Department, Beia Consult International, 41386 Bucharest, Romania)

Abstract

In the precision viticulture domain, data recorded by monitoring devices are large-scale processed to improve solutions for grapes’ quality and global production and to offer various recommendations to achieve these goals. Soil-related parameters (soil moisture, structure, etc.) and atmospheric parameters (precipitation, cumulative amount of heat) may facilitate crop diseases occurrence; thus, following predictive analysis, their estimation in vineyards can offer an early-stage warning for farmers and, therefore, suggestions for their prevention and treatment are of particular importance. Using remote sensing devices (e.g., satellites, unmanned vehicles) and proximal sensing methods (e.g., wireless sensor networks (WSNs)), we developed an efficient precision agriculture telemetry platform to provide reliable assessments of atmospheric phenomena periodicity and crop diseases estimation in a vineyard near Bucharest, Romania. The novelty of the materials and methods of this work relies on providing comprehensive preliminary references about monitored parameters to enable efficient, sustainable agriculture. Comparative analyses for two consecutive years illustrate an excellent correlation between cumulative and daily heat, precipitation quantity, and daily evapotranspiration (ET). In addition, the platform proved viable for wine-grapes disease estimation (powdery mildew, grape bunch rot, and grape downy mildew) and treatment recommendations based on the elaborated phenological calendar. Our results, together with continuous monitoring for the upcoming years, may be used as a reference to perform productive, sustainable smart agriculture in terms of yield and crop quality in Romania. In the Conclusion section, we show that farmers and personnel from cooperatives can use this information to make assessments based on the correlation of the available data to avoid critical damage to the wine-grape.

Suggested Citation

  • Ioana Marcu & Ana-Maria Drăgulinescu & Cristina Oprea & George Suciu & Cristina Bălăceanu, 2022. "Predictive Analysis and Wine-Grapes Disease Risk Assessment Based on Atmospheric Parameters and Precision Agriculture Platform," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11487-:d:914082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11487/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11487/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Nishat Akhtar & Abdurrahman Javid Shaikh & Ambareen Khan & Habib Awais & Elmi Abu Bakar & Abdul Rahim Othman, 2021. "Smart Sensing with Edge Computing in Precision Agriculture for Soil Assessment and Heavy Metal Monitoring: A Review," Agriculture, MDPI, vol. 11(6), pages 1-37, May.
    2. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    3. Alexandros Zervopoulos & Athanasios Tsipis & Aikaterini Georgia Alvanou & Konstantinos Bezas & Asterios Papamichail & Spiridon Vergis & Andreana Stylidou & Georgios Tsoumanis & Vasileios Komianos & Ge, 2020. "Wireless Sensor Network Synchronization for Precision Agriculture Applications," Agriculture, MDPI, vol. 10(3), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morice R. O. Odhiambo & Adnan Abbas & Xiaochan Wang & Ehsan Elahi, 2020. "Thermo-Environmental Assessment of a Heated Venlo-Type Greenhouse in the Yangtze River Delta Region," Sustainability, MDPI, vol. 12(24), pages 1-34, December.
    2. Premaratne Samaranayake & Weiguang Liang & Zhong-Hua Chen & David Tissue & Yi-Chen Lan, 2020. "Sustainable Protected Cropping: A Case Study of Seasonal Impacts on Greenhouse Energy Consumption during Capsicum Production," Energies, MDPI, vol. 13(17), pages 1-23, August.
    3. Gloria Alexandra Ortiz Rocha & Maria Angelica Pichimata & Edwin Villagran, 2021. "Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping," Sustainability, MDPI, vol. 13(18), pages 1-40, September.
    4. Yuhao Li & Chengguo Fu & Hui Yang & Haibo Li & Rongxian Zhang & Yaqi Zhang & Zhankui Wang, 2023. "Design of a Closed Piggery Environmental Monitoring and Control System Based on a Track Inspection Robot," Agriculture, MDPI, vol. 13(8), pages 1-25, July.
    5. Hamid Bagha & Ali Yavari & Dimitrios Georgakopoulos, 2022. "Hybrid Sensing Platform for IoT-Based Precision Agriculture," Future Internet, MDPI, vol. 14(8), pages 1-23, July.
    6. F. C. S. Eiras & W. L. Zucchi, 2022. "Measuring synchronization precision in mobile sensor networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 81(2), pages 253-267, October.
    7. Ha Quang Thinh Ngo & Thanh Phuong Nguyen & Hung Nguyen, 2020. "Research on a Low-Cost, Open-Source, and Remote Monitoring Data Collector to Predict Livestock’s Habits Based on Location and Auditory Information: A Case Study from Vietnam," Agriculture, MDPI, vol. 10(5), pages 1-26, May.
    8. Lin, Terry & Goldsworthy, Mark & Chavan, Sachin & Liang, Weiguang & Maier, Chelsea & Ghannoum, Oula & Cazzonelli, Christopher I. & Tissue, David T. & Lan, Yi-Chen & Sethuvenkatraman, Subbu & Lin, Han , 2022. "A novel cover material improves cooling energy and fertigation efficiency for glasshouse eggplant production," Energy, Elsevier, vol. 251(C).
    9. Edwin Villagran & Rommel Leon & Andrea Rodriguez & Jorge Jaramillo, 2020. "3D Numerical Analysis of the Natural Ventilation Behavior in a Colombian Greenhouse Established in Warm Climate Conditions," Sustainability, MDPI, vol. 12(19), pages 1-27, October.
    10. Johan J. Estrada-López & Javier Vázquez-Castillo & Andrea Castillo-Atoche & Edith Osorio-de-la-Rosa & Julio Heredia-Lozano & Alejandro Castillo-Atoche, 2023. "A Sustainable Forage-Grass-Power Fuel Cell Solution for Edge-Computing Wireless Sensing Processing in Agriculture 4.0 Applications," Energies, MDPI, vol. 16(7), pages 1-17, March.
    11. Xufeng Li & Juanjuan Ma & Xihuan Sun & Lijian Zheng & Ruixia Chen & Jianglong An, 2023. "Estimating the Effects of Deficit Irrigation on Water Absorption and Utilization of Tomatoes Grown in Greenhouse with Hydrus-1D Model," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    12. Mohammad Akrami & Can Dogan Mutlum & Akbar A. Javadi & Alaa H. Salah & Hassan E. S. Fath & Mahdieh Dibaj & Raziyeh Farmani & Ramy H. Mohammed & Abdelazim Negm, 2021. "Analysis of Inlet Configurations on the Microclimate Conditions of a Novel Standalone Agricultural Greenhouse for Egypt Using Computational Fluid Dynamics," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    13. Premaratne Samaranayake & Chelsea Maier & Sachin Chavan & Weiguang Liang & Zhong-Hua Chen & David T. Tissue & Yi-Chen Lan, 2021. "Energy Minimisation in a Protected Cropping Facility Using Multi-Temperature Acquisition Points and Control of Ventilation Settings," Energies, MDPI, vol. 14(19), pages 1-18, September.
    14. Theodoros Petrakis & Angeliki Kavga & Vasileios Thomopoulos & Athanassios A. Argiriou, 2022. "Neural Network Model for Greenhouse Microclimate Predictions," Agriculture, MDPI, vol. 12(6), pages 1-17, May.
    15. Édson Luis Bolfe & Lúcio André de Castro Jorge & Ieda Del’Arco Sanches & Ariovaldo Luchiari Júnior & Cinthia Cabral da Costa & Daniel de Castro Victoria & Ricardo Yassushi Inamasu & Célia Regina Grego, 2020. "Precision and Digital Agriculture: Adoption of Technologies and Perception of Brazilian Farmers," Agriculture, MDPI, vol. 10(12), pages 1-16, December.
    16. Javier Rodríguez-Robles & Álvaro Martin & Sergio Martin & José A. Ruipérez-Valiente & Manuel Castro, 2020. "Autonomous Sensor Network for Rural Agriculture Environments, Low Cost, and Energy Self-Charge," Sustainability, MDPI, vol. 12(15), pages 1-17, July.
    17. Gianluca Serale & Luca Gnoli & Emanuele Giraudo & Enrico Fabrizio, 2021. "A Supervisory Control Strategy for Improving Energy Efficiency of Artificial Lighting Systems in Greenhouses," Energies, MDPI, vol. 14(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11487-:d:914082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.