IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v14y2022i8p233-d874816.html
   My bibliography  Save this article

Hybrid Sensing Platform for IoT-Based Precision Agriculture

Author

Listed:
  • Hamid Bagha

    (School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia)

  • Ali Yavari

    (School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia)

  • Dimitrios Georgakopoulos

    (School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia)

Abstract

Precision agriculture (PA) is the field that deals with the fine-tuned management of crops to increase crop yield, augment profitability, and conserve the environment. Existing Internet of Things (IoT) solutions for PA are typically divided in terms of their use of either aerial sensing using unmanned aerial vehicles (UAVs) or ground-based sensing approaches. Ground-based sensing provides high data accuracy, but it involves large grids of ground-based sensors with high operational costs and complexity. On the other hand, while the cost of aerial sensing is much lower than ground-based sensing alternatives, the data collected via aerial sensing are less accurate and cover a smaller period than ground-based sensing data. Despite the contrasting virtues and limitations of these two sensing approaches, there are currently no hybrid sensing IoT solutions that combine aerial and ground-based sensing to ensure high data accuracy at a low cost. In this paper, we propose a Hybrid Sensing Platform (HSP) for PA—an IoT platform that combines a small number of ground-based sensors with aerial sensors to improve aerial data accuracy and at the same time reduce ground-based sensing costs.

Suggested Citation

  • Hamid Bagha & Ali Yavari & Dimitrios Georgakopoulos, 2022. "Hybrid Sensing Platform for IoT-Based Precision Agriculture," Future Internet, MDPI, vol. 14(8), pages 1-23, July.
  • Handle: RePEc:gam:jftint:v:14:y:2022:i:8:p:233-:d:874816
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/14/8/233/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/14/8/233/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandros Zervopoulos & Athanasios Tsipis & Aikaterini Georgia Alvanou & Konstantinos Bezas & Asterios Papamichail & Spiridon Vergis & Andreana Stylidou & Georgios Tsoumanis & Vasileios Komianos & Ge, 2020. "Wireless Sensor Network Synchronization for Precision Agriculture Applications," Agriculture, MDPI, vol. 10(3), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuhao Li & Chengguo Fu & Hui Yang & Haibo Li & Rongxian Zhang & Yaqi Zhang & Zhankui Wang, 2023. "Design of a Closed Piggery Environmental Monitoring and Control System Based on a Track Inspection Robot," Agriculture, MDPI, vol. 13(8), pages 1-25, July.
    2. F. C. S. Eiras & W. L. Zucchi, 2022. "Measuring synchronization precision in mobile sensor networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 81(2), pages 253-267, October.
    3. Ha Quang Thinh Ngo & Thanh Phuong Nguyen & Hung Nguyen, 2020. "Research on a Low-Cost, Open-Source, and Remote Monitoring Data Collector to Predict Livestock’s Habits Based on Location and Auditory Information: A Case Study from Vietnam," Agriculture, MDPI, vol. 10(5), pages 1-26, May.
    4. Ioana Marcu & Ana-Maria Drăgulinescu & Cristina Oprea & George Suciu & Cristina Bălăceanu, 2022. "Predictive Analysis and Wine-Grapes Disease Risk Assessment Based on Atmospheric Parameters and Precision Agriculture Platform," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    5. Édson Luis Bolfe & Lúcio André de Castro Jorge & Ieda Del’Arco Sanches & Ariovaldo Luchiari Júnior & Cinthia Cabral da Costa & Daniel de Castro Victoria & Ricardo Yassushi Inamasu & Célia Regina Grego, 2020. "Precision and Digital Agriculture: Adoption of Technologies and Perception of Brazilian Farmers," Agriculture, MDPI, vol. 10(12), pages 1-16, December.
    6. Javier Rodríguez-Robles & Álvaro Martin & Sergio Martin & José A. Ruipérez-Valiente & Manuel Castro, 2020. "Autonomous Sensor Network for Rural Agriculture Environments, Low Cost, and Energy Self-Charge," Sustainability, MDPI, vol. 12(15), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:8:p:233-:d:874816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.