IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11374-d911760.html
   My bibliography  Save this article

Potential of Organic Amendments for Heavy Metal Contamination in Soil–Coriander System: Environmental Fate and Associated Ecological Risk

Author

Listed:
  • Muhammad Iftikhar Hussain

    (Department of Plant Biology & Soil Science, Universidad de Vigo, 36310 Vigo, Spain)

  • Zafar Iqbal Khan

    (Department of Botany, University of Sargodha, Sargodha 40100, Pakistan)

  • Pervaiz Akhter

    (Department of Botany, University of Sargodha, Sargodha 40100, Pakistan)

  • Fahad M. Al-Hemaid

    (Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

  • Abdulrahman Al-Hashimi

    (Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

  • Mohamed Soliman Elshikh

    (Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

  • Kafeel Ahmad

    (Department of Plant Biology & Soil Science, Universidad de Vigo, 36310 Vigo, Spain)

  • Hsi-Hsien Yang

    (Department of Environmental Engineering and Management, Chaoyang University of Technology. No. 168, Jifeng E. Rd., Wufeng District, Taichung 413310, Taiwan)

Abstract

Pollution by organic wastes and manures is an important problem in tropical and sub-tropical countries and novel solutions for their proper management and valorization are needed. Waste-derived organic manures may increase metal load in the soil–plant ecosystem and food chain, with potential risks to public health. The aim of this work was to evaluate the impact of three manures (poultry waste (PW), press mud (PM), and farmyard manure (FYM)) on heavy metals (HMs) (Cd, Co, Cr, Cu, Pb, Zn, Fe, Mn) toxicity in a soil and coriander ( Coriandrum sativum L.) system and their environmental impact (bioaccumulation, pollution load) and the consequent risk to human health via consumption. Results demonstrated that HMs in coriander fluctuated from 0.40 to 0.43 for Cd, 1.84 to 3.52 for Co, 0.15 to 0.16 for Cr, 1.32 to 1.40 for Cu, 0.05 to 0.09 for Pb, 1.32 to 2.51 for Fe, 0.10 to 0.32 for Mn, and 2.01 to 8.70 mg/kg for Zn, respectively. Highest pollution load index value was 2.89 for Cd and Mn showed the lowest (0.005). Daily intake of metal was noticed to be higher for Zn (0.049 mg/kg/day) for PW and lower for Mn (0.0005) at FYM treatment. The health risk index value was <1 and in the range of 2.30–2.50 for Cd showing potential carcinogenicity. It was concluded that as the organic amendments have the widest application in vegetables, it should be prudent to avoid their contamination and mobilization in plant–soil ecosystems to protect public health perspectives.

Suggested Citation

  • Muhammad Iftikhar Hussain & Zafar Iqbal Khan & Pervaiz Akhter & Fahad M. Al-Hemaid & Abdulrahman Al-Hashimi & Mohamed Soliman Elshikh & Kafeel Ahmad & Hsi-Hsien Yang, 2022. "Potential of Organic Amendments for Heavy Metal Contamination in Soil–Coriander System: Environmental Fate and Associated Ecological Risk," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11374-:d:911760
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11374/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11374/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hussain, M. Iftikhar & Muscolo, Adele & Farooq, Muhammad & Ahmad, Waqar, 2019. "Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments," Agricultural Water Management, Elsevier, vol. 221(C), pages 462-476.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Ghazzal & Muhammad Iftikhar Hussain & Zafar Iqbal Khan & M. Habib ur Rahman & Abeer A. El-Habeeb & Hsi-Hsien Yang, 2022. "Chromium Poisoning in Buffaloes in the Vicinity of Contaminated Pastureland, Punjab, Pakistan," Sustainability, MDPI, vol. 14(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. M. Aishwarya & R. Vidhya, 2023. "Study on the Efficiency of a Hydroponic Treatment for Removing Organic Loading from Wastewater and Its Application as a Nutrient for the “ Amaranthus campestris ” Plant for Sustainability," Sustainability, MDPI, vol. 15(10), pages 1-13, May.
    2. Regmi, Rupesh & Zhang, Zhuo & Zhang, Hongpeng, 2023. "Entrepreneurship strategy, natural resources management and sustainable performance: A study of an emerging market," Resources Policy, Elsevier, vol. 86(PB).
    3. Ghalia Saleem Aljeddani, 2022. "Reusing Sewage Effluent in Greening Urban Areas: A Case Study of: Southern Jeddah, Saudi Arabia," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    4. Štefan Bojnec & Umar Daraz & Younas Khan, 2024. "Harvesting Sunlight: The Promise of Agro-Photovoltaic Fusion Systems for Sustainable Agriculture and Renewable Energy Generation," Energies, MDPI, vol. 17(13), pages 1-29, July.
    5. Zhenjie Du & Shuang Zhao & Yingjun She & Yan Zhang & Jingjing Yuan & Shafeeq Ur Rahman & Xuebin Qi & Yue Xu & Ping Li, 2022. "Effects of Different Wastewater Irrigation on Soil Properties and Vegetable Productivity in the North China Plain," Agriculture, MDPI, vol. 12(8), pages 1-13, July.
    6. Muhammad Iftikhar Hussain & Majida Naeem & Zafar Iqbal Khan & Shahzad Akhtar & Muhammad Nadeem & Maha Abdallah Alnuwaiser & Kafeel Ahmad & Oscar Vicente & Hsi-Hsien Yang, 2022. "Cadmium (Cd) and Copper (Cu) Exposure and Bioaccumulation Arrays in Farm Ruminants: Impact of Forage Ecotypes, Ecological Sites and Body Organs," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
    7. Shi, Jingxin & Huang, Wenping & Han, Hongjun & Xu, Chunyan, 2021. "Pollution control of wastewater from the coal chemical industry in China: Environmental management policy and technical standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Yiding Wang & Yaning Chen & Weili Duan & Li Jiao, 2022. "Evaluation of Sustainable Water Resource Use in the Tarim River Basin Based on Water Footprint," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    9. Efthymios Rodias & Eirini Aivazidou & Charisios Achillas & Dimitrios Aidonis & Dionysis Bochtis, 2020. "Water-Energy-Nutrients Synergies in the Agrifood Sector: A Circular Economy Framework," Energies, MDPI, vol. 14(1), pages 1-17, December.
    10. Michalia Sakellariou & Basil E. Psiloglou & Christos Giannakopoulos & Photini V. Mylona, 2021. "Integration of Abandoned Lands in Sustainable Agriculture: The Case of Terraced Landscape Re-Cultivation in Mediterranean Island Conditions," Land, MDPI, vol. 10(5), pages 1-16, April.
    11. J. C. Morris & I. Georgiou & E. Guenther & S. Caucci, 2021. "Barriers in Implementation of Wastewater Reuse: Identifying the Way Forward in Closing the Loop," Circular Economy and Sustainability, Springer, vol. 1(1), pages 413-433, June.
    12. Nicoleta Ungureanu & Valentin Vlăduț & Gheorghe Voicu, 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    13. Mahmoud S. Hashem & Wei Guo & Xuebin Qi & Ping Li, 2022. "Assessing the Effect of Irrigation with Reclaimed Water Using Different Irrigation Techniques on Tomatoes Quality Parameters," Sustainability, MDPI, vol. 14(5), pages 1-19, March.
    14. Marwa M. Waly & Taha Ahmed & Ziyad Abunada & Slobodan B. Mickovski & Craig Thomson, 2022. "Constructed Wetland for Sustainable and Low-Cost Wastewater Treatment: Review Article," Land, MDPI, vol. 11(9), pages 1-17, August.
    15. Yu, Haochen & Chen, Fu & Ma, Jing & Khan, Zafar Iqbal & Hussain, M. Iftikhar & Javaid, Iqra & Ahmad, Kafeel & Nazar, Sonaina & Akhtar, Shahzad & Ejaz, Abid & Sohail, Muhammad & Nadeem, Muhammad & Hami, 2022. "Comparative evaluation of groundwater, wastewater and canal water for irrigation on toxic metal accumulation in soil and vegetable: Pollution load and health risk assessment," Agricultural Water Management, Elsevier, vol. 264(C).
    16. Chojnacka, K. & Witek-Krowiak, A. & Moustakas, K. & Skrzypczak, D. & Mikula, K. & Loizidou, M., 2020. "A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    17. Giuseppe Mancuso & Monica C. M. Parlato & Stevo Lavrnić & Attilio Toscano & Francesca Valenti, 2022. "GIS-Based Assessment of the Potential for Treated Wastewater Reuse in Agricultural Irrigation: A Case Study in Northern Italy," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    18. Zhang, Junpeng & Wang, He & Feng, Di & Cao, Caiyun & Zheng, Chunlian & Dang, Hongkai & Li, Kejiang & Gao, Yang & Sun, Chitao, 2024. "Evaluating the impacts of long-term saline water irrigation on soil salinity and cotton yield under plastic film mulching: A 15-year field study," Agricultural Water Management, Elsevier, vol. 293(C).
    19. Hadeel E. Khairan & Salah L. Zubaidi & Syed Fawad Raza & Maysoun Hameed & Nadhir Al-Ansari & Hussein Mohammed Ridha, 2023. "Examination of Single- and Hybrid-Based Metaheuristic Algorithms in ANN Reference Evapotranspiration Estimating," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    20. Hussain, M. Iftikhar & Al-Dakheel, Abdullah J. & Chaudhry, Usman Khalid & Khan, Muhammad Imran & ALHaithloul, Haifa Abdulaziz Sakit & Alghanem, Suliman Mohammed & Alaklabi, Abdullah, 2022. "Morpho-physiological response of barley to assess genotypic differences of salinity tolerance under hyper arid climate," Agricultural Water Management, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11374-:d:911760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.