IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9364-d876534.html
   My bibliography  Save this article

GIS-Based Assessment of the Potential for Treated Wastewater Reuse in Agricultural Irrigation: A Case Study in Northern Italy

Author

Listed:
  • Giuseppe Mancuso

    (Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Viale Giuseppe Fanin 50, 40127 Bologna, Italy
    CIRI FRAME—Interterdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea and Energy, Alma Mater Studiorum—University of Bologna, Via Selmi 2, 40126 Bologna, Italy)

  • Monica C. M. Parlato

    (Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy)

  • Stevo Lavrnić

    (Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Viale Giuseppe Fanin 50, 40127 Bologna, Italy)

  • Attilio Toscano

    (Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Viale Giuseppe Fanin 50, 40127 Bologna, Italy
    CIRI FRAME—Interterdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea and Energy, Alma Mater Studiorum—University of Bologna, Via Selmi 2, 40126 Bologna, Italy)

  • Francesca Valenti

    (Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy)

Abstract

Agriculture is the major water user worldwide and it is expected to be negatively affected by climate change and water scarcity. The use of non-conventional water resources could be the solution to overcome this issue. In fact, treated wastewater has a constant availability during the year and it contains nutrients needed for crop growth. The aim of this research was a GIS-based assessment of the potential for treated wastewater agricultural reuse in the Forlì-Cesena province within the Emilia-Romagna region (Italy). The results showed that, for the selected study area, treated wastewater could satisfy up to 316% of yearly and 210% of irrigation season crop water needs at the actually irrigated areas. Furthermore, the availability of this alternative water resource could lead to an increase in irrigated areas. For the proposed scenario, which considered both the actually irrigated areas as well as the irrigable areas, crop water needs could be satisfied by up to 107% on the yearly level and 71% in the case of the irrigation season. Treated wastewater reuse feasibility was also investigated considering the minimum water quality requirements that were recently provided by the new Regulation (EU) 2020/741.

Suggested Citation

  • Giuseppe Mancuso & Monica C. M. Parlato & Stevo Lavrnić & Attilio Toscano & Francesca Valenti, 2022. "GIS-Based Assessment of the Potential for Treated Wastewater Reuse in Agricultural Irrigation: A Case Study in Northern Italy," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9364-:d:876534
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9364/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9364/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valenti, Francesca & Porto, Simona M.C. & Dale, Bruce E. & Liao, Wei, 2018. "Spatial analysis of feedstock supply and logistics to establish regional biogas power generation: A case study in the region of Sicily," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 50-63.
    2. Hussain, M. Iftikhar & Muscolo, Adele & Farooq, Muhammad & Ahmad, Waqar, 2019. "Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments," Agricultural Water Management, Elsevier, vol. 221(C), pages 462-476.
    3. Ricart, Sandra & Rico, Antonio M., 2019. "Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor," Agricultural Water Management, Elsevier, vol. 217(C), pages 426-439.
    4. Qadir, M. & Sharma, B.R. & Bruggeman, A. & Choukr-Allah, R. & Karajeh, F., 2007. "Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries," Agricultural Water Management, Elsevier, vol. 87(1), pages 2-22, January.
    5. Francesca Valenti & Attilio Toscano, 2021. "A GIS-Based Model to Assess the Potential of Wastewater Treatment Plants for Enhancing Bioenergy Production within the Context of the Water–Energy Nexus," Energies, MDPI, vol. 14(10), pages 1-15, May.
    6. Simon Gosling & Nigel Arnell, 2016. "A global assessment of the impact of climate change on water scarcity," Climatic Change, Springer, vol. 134(3), pages 371-385, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Odone, Giordano & Perulli, Giulio Demetrio & Mancuso, Giuseppe & Lavrnić, Stevo & Toscano, Attilio, 2024. "A novel smart fertigation system for irrigation with treated wastewater: Effects on nutrient recovery, crop and soil," Agricultural Water Management, Elsevier, vol. 297(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radu Petrariu & Marius Constantin & Mihai Dinu & Simona Roxana Pătărlăgeanu & Mădălina Elena Deaconu, 2021. "Water, Energy, Food, Waste Nexus: Between Synergy and Trade-Offs in Romania Based on Entrepreneurship and Economic Performance," Energies, MDPI, vol. 14(16), pages 1-23, August.
    2. Ricart, Sandra & Rico, Antonio M., 2019. "Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor," Agricultural Water Management, Elsevier, vol. 217(C), pages 426-439.
    3. Hassan A. Awaad & Elsayed Mansour & Mohammad Akrami & Hassan E.S. Fath & Akbar A. Javadi & Abdelazim Negm, 2020. "Availability and Feasibility of Water Desalination as a Non-Conventional Resource for Agricultural Irrigation in the MENA Region: A Review," Sustainability, MDPI, vol. 12(18), pages 1-14, September.
    4. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    5. Bolinches, Antonio & Blanco-Gutiérrez, Irene & Zubelzu, Sergio & Esteve, Paloma & Gómez-Ramos, Almudena, 2022. "A method for the prioritization of water reuse projects in agriculture irrigation," Agricultural Water Management, Elsevier, vol. 263(C).
    6. J. M. Aishwarya & R. Vidhya, 2023. "Study on the Efficiency of a Hydroponic Treatment for Removing Organic Loading from Wastewater and Its Application as a Nutrient for the “ Amaranthus campestris ” Plant for Sustainability," Sustainability, MDPI, vol. 15(10), pages 1-13, May.
    7. Heidarpour, M. & Mostafazadeh-Fard, B. & Abedi Koupai, J. & Malekian, R., 2007. "The effects of treated wastewater on soil chemical properties using subsurface and surface irrigation methods," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 87-94, May.
    8. Penglong Wang & Yao Wei & Fanglei Zhong & Xiaoyu Song & Bao Wang & Qinhua Wang, 2022. "Evaluation of Agricultural Water Resources Carrying Capacity and Its Influencing Factors: A Case Study of Townships in the Arid Region of Northwest China," Agriculture, MDPI, vol. 12(5), pages 1-24, May.
    9. Regmi, Rupesh & Zhang, Zhuo & Zhang, Hongpeng, 2023. "Entrepreneurship strategy, natural resources management and sustainable performance: A study of an emerging market," Resources Policy, Elsevier, vol. 86(PB).
    10. Zvi Baum & Ruslana Rachel Palatnik & Iddo Kan & Mickey Rapaport-Rom, 2016. "Economic Impacts of Water Scarcity Under Diverse Water Salinities," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-22, March.
    11. Mashkhura Babadjanova & Ihtiyor Bobojonov & Maksud Bekchanov & Lena Kuhn & Thomas Glauben, 2024. "Can domestic wheat farming meet the climate change-induced challenges of national food security in Uzbekistan?," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 40(3), pages 448-462, May.
    12. Ghalia Saleem Aljeddani, 2022. "Reusing Sewage Effluent in Greening Urban Areas: A Case Study of: Southern Jeddah, Saudi Arabia," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    13. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Zijie Sang & Ge Zhang & Haiqing Wang & Wangyang Zhang & Yuxiu Chen & Mingyang Han & Ke Yang, 2023. "Effective Solutions to Ecological and Water Environment Problems in the Sanjiang Plain: Utilization of Farmland Drainage Resources," Sustainability, MDPI, vol. 15(23), pages 1-14, November.
    16. Zuo, Qiting & Wu, Qingsong & Yu, Lei & Li, Yongping & Fan, Yurui, 2021. "Optimization of uncertain agricultural management considering the framework of water, energy and food," Agricultural Water Management, Elsevier, vol. 253(C).
    17. Courtney M. Regan & Jeffery D. Connor & Md Sayed Iftekhar, 2023. "An economic assessment of options for operating within plantation forestry water entitlements and tightening cap and trade policy," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(2), pages 303-322, April.
    18. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    19. Moraetis, D. & Stamati, F.E. & Nikolaidis, N.P. & Kalogerakis, N., 2011. "Olive mill wastewater irrigation of maize: Impacts on soil and groundwater," Agricultural Water Management, Elsevier, vol. 98(7), pages 1125-1132, May.
    20. Ingrao, Carlo & Bacenetti, Jacopo & Adamczyk, Janusz & Ferrante, Valentina & Messineo, Antonio & Huisingh, Donald, 2019. "Investigating energy and environmental issues of agro-biogas derived energy systems: A comprehensive review of Life Cycle Assessments," Renewable Energy, Elsevier, vol. 136(C), pages 296-307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9364-:d:876534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.