IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp237-247.html
   My bibliography  Save this article

Energy smart hot-air pasteurisation as effective as energy intense autoclaving for fungal preprocessing of lignocellulose feedstock for bioethanol fuel production

Author

Listed:
  • Wei, Maogui
  • Xiong, Shaojun
  • Chen, Feng
  • Geladi, Paul
  • Eilertsen, Lill
  • Myronycheva, Olena
  • Lestander, Torbjörn A.
  • Thyrel, Mikael

Abstract

This study compared the effects of hot-air pasteurisation (HAP) at 75–100 °C versus autoclaving at 121 °C and 2 bar overpressure on the lignocellulosic degradation process of birch-based substrates that were used for shiitake mushroom cultivation and potential bioethanol production. Fifty substrate samples were obtained as a time series from different stages of the cultivation, and their chemical contents were measured by chemical analysis and near infra-red spectroscopy (NIR). Despite of different energy intensities, HAP and autoclaving did not result in significant differences in the degradation of lignin and carbohydrates. Major compositional changes were associated with the cultivation process. Principal component analysis on the wet chemical data and orthogonal projections to latent structures based on NIR spectra reached the same conclusion, namely that HAP had similar effect as autoclaving on compositional changes in the substrate during cultivation. The results of this study suggest that a substitution of autoclaving by HAP may potentially save up to 9.9 TWh energy for the global production of 7.5 million ton shiitake. At the same time, lignocellulose feedstock can be pretreated for the production of up to 3.24 million m3 of 95%-ethanol fuels, which can potentially substitute proximate 1.88 million m3 of regular gasoline.

Suggested Citation

  • Wei, Maogui & Xiong, Shaojun & Chen, Feng & Geladi, Paul & Eilertsen, Lill & Myronycheva, Olena & Lestander, Torbjörn A. & Thyrel, Mikael, 2020. "Energy smart hot-air pasteurisation as effective as energy intense autoclaving for fungal preprocessing of lignocellulose feedstock for bioethanol fuel production," Renewable Energy, Elsevier, vol. 155(C), pages 237-247.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:237-247
    DOI: 10.1016/j.renene.2020.03.154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120304870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shirkavand, Ehsan & Baroutian, Saeid & Gapes, Daniel J. & Young, Brent R., 2016. "Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 217-234.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Chunyan & Wang, Nan & Chen, Yifeng & Khokarale, Santosh Govind & Bui, Thai Q. & Weiland, Fredrik & Lestander, Torbjörn A. & Rudolfsson, Magnus & Mikkola, Jyri-Pekka & Ji, Xiaoyan, 2020. "Towards negative carbon emissions: Carbon capture in bio-syngas from gasification by aqueous pentaethylenehexamine," Applied Energy, Elsevier, vol. 279(C).
    2. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Maria Alexandropoulou & Georgia Antonopoulou & Ioanna Ntaikou & Gerasimos Lyberatos, 2017. "Fungal Pretreatment of Willow Sawdust with Abortiporus biennis for Anaerobic Digestion: Impact of an External Nitrogen Source," Sustainability, MDPI, vol. 9(1), pages 1-14, January.
    4. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    5. Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
    6. Hassan, Shady S. & Williams, Gwilym A. & Jaiswal, Amit K., 2019. "Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 590-599.
    7. Rooni, V. & Sjulander, N. & Cristobal-Sarramian, A. & Raud, M. & Rocha-Meneses, Lisandra & Kikas, T., 2021. "The efficiency of nitrogen explosion pretreatment on common aspen – Populus tremula: N2– VS steam explosion," Energy, Elsevier, vol. 220(C).
    8. Shen, Feng & Xiong, Xinni & Fu, Junyan & Yang, Jirui & Qiu, Mo & Qi, Xinhua & Tsang, Daniel C.W., 2020. "Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    9. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Awad, Faisal N. & Qi, Xianghui & Sahu, J.N., 2019. "Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 105-128.
    10. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    11. Anyaoku, Chukwunonso Chinedu & Baroutian, Saeid, 2018. "Decentralized anaerobic digestion systems for increased utilization of biogas from municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 982-991.
    12. Bhutto, Abdul Waheed & Qureshi, Khadija & Harijan, Khanji & Abro, Rashid & Abbas, Tauqeer & Bazmi, Aqeel Ahmed & Karim, Sadia & Yu, Guangren, 2017. "Insight into progress in pre-treatment of lignocellulosic biomass," Energy, Elsevier, vol. 122(C), pages 724-745.
    13. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    14. Mariana Ferdeș & Gigel Paraschiv & Mariana Ionescu & Mirela Nicoleta Dincă & Georgiana Moiceanu & Bianca Ștefania Zăbavă, 2023. "Anaerobic Co-Digestion: A Way to Potentiate the Synergistic Effect of Multiple Substrates and Microbial Diversity," Energies, MDPI, vol. 16(5), pages 1-24, February.
    15. Ogechukwu Bose Chukwuma & Mohd Rafatullah & Husnul Azan Tajarudin & Norli Ismail, 2020. "Lignocellulolytic Enzymes in Biotechnological and Industrial Processes: A Review," Sustainability, MDPI, vol. 12(18), pages 1-31, September.
    16. Nicoleta Ungureanu & Valentin Vlăduț & Sorin-Ștefan Biriș, 2022. "Sustainable Valorization of Waste and By-Products from Sugarcane Processing," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    17. Dao, Cuong N. & Tabil, Lope G. & Mupondwa, Edmund & Dumonceaux, Tim, 2023. "Microbial pretreatment of camelina straw and switchgrass by Trametes versicolor and Phanerochaete chrysosporium to improve physical quality and enhance enzymatic digestibility of solid biofuel pellets," Renewable Energy, Elsevier, vol. 217(C).
    18. Osvalda Senneca & Barbara Apicella & Carmela Russo & Francesca Cerciello, 2022. "Biomass Behavior upon Fast Pyrolysis in Inert and in CO 2 -Rich Atmospheres: Role of Lignin, Hemicellulose and Cellulose Content," Energies, MDPI, vol. 15(15), pages 1-13, July.
    19. Wang, Haiyong & Zhu, Changhui & Li, Dan & Liu, Qiying & Tan, Jin & Wang, Chenguang & Cai, Chiliu & Ma, Longlong, 2019. "Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 227-247.
    20. Yuchen Bai & Huiya Feng & Nan Liu & Xuebing Zhao, 2023. "Biomass-Derived 2,3-Butanediol and Its Application in Biofuels Production," Energies, MDPI, vol. 16(15), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:237-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.