IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10985-d905434.html
   My bibliography  Save this article

Multi-Stage Incentive-Based Demand Response Using a Novel Stackelberg–Particle Swarm Optimization

Author

Listed:
  • Suchitra Dayalan

    (Department of EEE, SRMIST, Kattankulathur 603203, India)

  • Sheikh Suhaib Gul

    (Department of EEE, SRMIST, Kattankulathur 603203, India)

  • Rajarajeswari Rathinam

    (Department of EEE, SRMIST, Kattankulathur 603203, India)

  • George Fernandez Savari

    (Department of EEE, SRMIST, Kattankulathur 603203, India)

  • Shady H. E. Abdel Aleem

    (Department of Electrical Engineering, Valley High Institute of Engineering and Technology, Science Valley Academy, Qalyubia 44971, Egypt)

  • Mohamed A. Mohamed

    (Electrical Engineering Department, Faculty of Engineering, Minia University, Minia 61519, Egypt)

  • Ziad M. Ali

    (Electrical Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, Wadi Addawaser 11991, Saudi Arabia
    Electrical Engineering Department, Aswan Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

Abstract

Demand response programs can effectively handle the smart grid’s increasing energy demand and power imbalances. In this regard, price-based DR (PBDR) and incentive-based DR (IBDR) are two broad categories of demand response in which incentives for consumers are provided in IBDR to reduce their demand. This work aims to implement the IBDR strategy from the perspective of the service provider and consumers. The relationship between the different entities concerned is modelled. The incentives offered by the service provider (SP) to its consumers and the consumers’ reduced demand are optimized using Stackelberg–particle swarm optimization (SPSO) as a bi-level problem. Furthermore, the system with a grid operator, the industrial consumers of the grid operator, the service provider and its consumers are analyzed from the service provider’s viewpoint as a tri-level problem. The benefits offered by the service provider to its customers, the incentives provided by the grid operator to its industrial customers, the reduction of customer demand, and the average cost procured by the grid operator are optimized using SPSO and compared with the Stackelberg-distributed algorithm. The problem was analyzed for an hour and 24 h in the MATLAB environment. Besides this, sensitivity analysis and payment analysis were carried out in order to delve into the impact of the demand response program concerning the change in customer parameters.

Suggested Citation

  • Suchitra Dayalan & Sheikh Suhaib Gul & Rajarajeswari Rathinam & George Fernandez Savari & Shady H. E. Abdel Aleem & Mohamed A. Mohamed & Ziad M. Ali, 2022. "Multi-Stage Incentive-Based Demand Response Using a Novel Stackelberg–Particle Swarm Optimization," Sustainability, MDPI, vol. 14(17), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10985-:d:905434
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Mengmeng & Hong, Seung Ho, 2017. "Incentive-based demand response considering hierarchical electricity market: A Stackelberg game approach," Applied Energy, Elsevier, vol. 203(C), pages 267-279.
    2. George S. Fernandez & Vijayakumar Krishnasamy & Selvakumar Kuppusamy & Jagabar S. Ali & Ziad M. Ali & Adel El-Shahat & Shady H. E. Abdel Aleem, 2020. "Optimal Dynamic Scheduling of Electric Vehicles in a Parking Lot Using Particle Swarm Optimization and Shuffled Frog Leaping Algorithm," Energies, MDPI, vol. 13(23), pages 1-26, December.
    3. Luo, Zhe & Hong, SeungHo & Ding, YueMin, 2019. "A data mining-driven incentive-based demand response scheme for a virtual power plant," Applied Energy, Elsevier, vol. 239(C), pages 549-559.
    4. Fotouhi Ghazvini, Mohammad Ali & Soares, João & Horta, Nuno & Neves, Rui & Castro, Rui & Vale, Zita, 2015. "A multi-objective model for scheduling of short-term incentive-based demand response programs offered by electricity retailers," Applied Energy, Elsevier, vol. 151(C), pages 102-118.
    5. Imani, Mahmood Hosseini & Ghadi, M. Jabbari & Ghavidel, Sahand & Li, Li, 2018. "Demand Response Modeling in Microgrid Operation: a Review and Application for Incentive-Based and Time-Based Programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 486-499.
    6. Mohamed A Mohamed & Ali M Eltamaly & Abdulrahman I Alolah, 2016. "PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-22, August.
    7. Abdulaziz Almalaq & Khalid Alqunun & Mohamed M. Refaat & Anouar Farah & Fares Benabdallah & Ziad M. Ali & Shady H. E. Abdel Aleem, 2022. "Towards Increasing Hosting Capacity of Modern Power Systems through Generation and Transmission Expansion Planning," Sustainability, MDPI, vol. 14(5), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aya Amer & Khaled Shaban & Ahmed Massoud, 2022. "Demand Response in HEMSs Using DRL and the Impact of Its Various Configurations and Environmental Changes," Energies, MDPI, vol. 15(21), pages 1-20, November.
    2. Kansal, Gaurav & Tiwari, Rajive, 2024. "A PEM-based augmented IBDR framework and its evaluation in contemporary distribution systems," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Zheng, Shunlin & Sun, Yi & Li, Bin & Qi, Bing & Zhang, Xudong & Li, Fei, 2021. "Incentive-based integrated demand response for multiple energy carriers under complex uncertainties and double coupling effects," Applied Energy, Elsevier, vol. 283(C).
    3. Xu, Bo & Wang, Jiexin & Guo, Mengyuan & Lu, Jiayu & Li, Gehui & Han, Liang, 2021. "A hybrid demand response mechanism based on real-time incentive and real-time pricing," Energy, Elsevier, vol. 231(C).
    4. de Souza Dutra, Michael David & Alguacil, Natalia, 2020. "Optimal residential users coordination via demand response: An exact distributed framework," Applied Energy, Elsevier, vol. 279(C).
    5. Zhou, Kaile & Peng, Ning & Yin, Hui & Hu, Rong, 2023. "Urban virtual power plant operation optimization with incentive-based demand response," Energy, Elsevier, vol. 282(C).
    6. Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
    7. Li, Longxi, 2021. "Coordination between smart distribution networks and multi-microgrids considering demand side management: A trilevel framework," Omega, Elsevier, vol. 102(C).
    8. Chen, Yongbao & Zhang, Lixin & Xu, Peng & Di Gangi, Alessandra, 2021. "Electricity demand response schemes in China: Pilot study and future outlook," Energy, Elsevier, vol. 224(C).
    9. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    10. Wang, Dongxue & Fan, Ruguo & Yang, Peiwen & Du, Kang & Xu, Xiaoxia & Chen, Rongkai, 2024. "Research on floating real-time pricing strategy for microgrid operator in local energy market considering shared energy storage leasing," Applied Energy, Elsevier, vol. 368(C).
    11. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    12. Wakiyama, Takako & Zusman, Eric, 2021. "The impact of electricity market reform and subnational climate policy on carbon dioxide emissions across the United States: A path analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Ovidiu Ivanov & Samiran Chattopadhyay & Soumya Banerjee & Bogdan-Constantin Neagu & Gheorghe Grigoras & Mihai Gavrilas, 2020. "A Novel Algorithm with Multiple Consumer Demand Response Priorities in Residential Unbalanced LV Electricity Distribution Networks," Mathematics, MDPI, vol. 8(8), pages 1-24, July.
    14. Eissa, M.M., 2018. "First time real time incentive demand response program in smart grid with “i-Energy” management system with different resources," Applied Energy, Elsevier, vol. 212(C), pages 607-621.
    15. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    16. Motalleb, Mahdi & Thornton, Matsu & Reihani, Ehsan & Ghorbani, Reza, 2016. "A nascent market for contingency reserve services using demand response," Applied Energy, Elsevier, vol. 179(C), pages 985-995.
    17. Ghaith, Ahmad F. & Epplin, Francis M. & Frazier, R. Scott, 2017. "Economics of grid-tied household solar panel systems versus grid-only electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 407-424.
    18. Zehua Wang & Fachao Liang & Sheng-Hau Lin, 2023. "Can socially sustainable development be achieved through homestead withdrawal? A hybrid multiple-attributes decision analysis," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-18, December.
    19. Li-Peng Shao & Jia-Jia Chen & Lu-Wen Pan & Zi-Juan Yang, 2022. "A Credibility Theory-Based Robust Optimization Model to Hedge Price Uncertainty of DSO with Multiple Transactions," Mathematics, MDPI, vol. 10(23), pages 1-20, November.
    20. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10985-:d:905434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.