IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics0306261920313246.html
   My bibliography  Save this article

Optimal residential users coordination via demand response: An exact distributed framework

Author

Listed:
  • de Souza Dutra, Michael David
  • Alguacil, Natalia

Abstract

This paper proposes a two-phase optimization framework for users that are involved in demand response programs. In a first phase, responsive users optimize their own household consumption, characterizing not only their appliances and equipment but also their comfort preferences. Subsequently, the aggregator exploits in a second phase this preliminary non-coordinated solution by implementing a coordination strategy for the aggregated loads while preserving users’ privacy. The second phase relies on the solution of a bilevel program in which the aggregator’s profit is maximized in the upper level while ensuring that the aggregated residential users do not incur any economic or comfort losses by participating in the demand response program. The lower level models the users’ reaction to the aggregator’s requests. As major complicating aspects, the resulting bilevel problem features nonlinear terms and lower-level binary variables. This challenging problem is addressed by a mixed-integer linear single-level reformulation and the application of an exact solution technique based on Dantzig–Wolfe decomposition. Simulations with up to 10,000 residential users illustrate the advantages of the proposed two-phase framework in terms of users’ privacy, computational efficiency, and scalability.

Suggested Citation

  • de Souza Dutra, Michael David & Alguacil, Natalia, 2020. "Optimal residential users coordination via demand response: An exact distributed framework," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920313246
    DOI: 10.1016/j.apenergy.2020.115851
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920313246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Mengmeng & Hong, Seung Ho, 2017. "Incentive-based demand response considering hierarchical electricity market: A Stackelberg game approach," Applied Energy, Elsevier, vol. 203(C), pages 267-279.
    2. de Souza Dutra, Michael David & Anjos, Miguel F. & Le Digabel, Sébastien, 2019. "A general framework for customized transition to smart homes," Energy, Elsevier, vol. 189(C).
    3. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    4. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    5. Celik, Berk & Roche, Robin & Suryanarayanan, Siddharth & Bouquain, David & Miraoui, Abdellatif, 2017. "Electric energy management in residential areas through coordination of multiple smart homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 260-275.
    6. Fan, Songli & Ai, Qian & Piao, Longjian, 2018. "Bargaining-based cooperative energy trading for distribution company and demand response," Applied Energy, Elsevier, vol. 226(C), pages 469-482.
    7. Hui, Hongxun & Ding, Yi & Shi, Qingxin & Li, Fangxing & Song, Yonghua & Yan, Jinyue, 2020. "5G network-based Internet of Things for demand response in smart grid: A survey on application potential," Applied Energy, Elsevier, vol. 257(C).
    8. Yu, Mengmeng & Hong, Seung Ho, 2016. "Supply–demand balancing for power management in smart grid: A Stackelberg game approach," Applied Energy, Elsevier, vol. 164(C), pages 702-710.
    9. Fotouhi Ghazvini, Mohammad Ali & Soares, João & Horta, Nuno & Neves, Rui & Castro, Rui & Vale, Zita, 2015. "A multi-objective model for scheduling of short-term incentive-based demand response programs offered by electricity retailers," Applied Energy, Elsevier, vol. 151(C), pages 102-118.
    10. Burger, Scott & Chaves-Ávila, Jose Pablo & Batlle, Carlos & Pérez-Arriaga, Ignacio J., 2017. "A review of the value of aggregators in electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 395-405.
    11. Nolan, Sheila & O’Malley, Mark, 2015. "Challenges and barriers to demand response deployment and evaluation," Applied Energy, Elsevier, vol. 152(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mashlakov, Aleksei & Pournaras, Evangelos & Nardelli, Pedro H.J. & Honkapuro, Samuli, 2021. "Decentralized cooperative scheduling of prosumer flexibility under forecast uncertainties," Applied Energy, Elsevier, vol. 290(C).
    2. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    3. Jeddi, Babak & Mishra, Yateendra & Ledwich, Gerard, 2021. "Distributed load scheduling in residential neighborhoods for coordinated operation of multiple home energy management systems," Applied Energy, Elsevier, vol. 300(C).
    4. Luz, G. Pontes & Brito, M.C. & Sousa, J.M.C. & Vieira, S.M., 2021. "Coordinating shiftable loads for collective photovoltaic self-consumption: A multi-agent approach," Energy, Elsevier, vol. 229(C).
    5. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    6. Fernández-Blanco, Ricardo & Morales, Juan Miguel & Pineda, Salvador, 2021. "Forecasting the price-response of a pool of buildings via homothetic inverse optimization," Applied Energy, Elsevier, vol. 290(C).
    7. Li, Peng & Wang, Zixuan & Liu, Haitao & Wang, Jiahao & Guo, Tianyu & Yin, Yunxing, 2021. "Bi-level optimal configuration strategy of community integrated energy system with coordinated planning and operation," Energy, Elsevier, vol. 236(C).
    8. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    9. Etedadi, Farshad & Kelouwani, Sousso & Agbossou, Kodjo & Henao, Nilson & Laurencelle, François, 2023. "Consensus and sharing based distributed coordination of home energy management systems with demand response enabled baseboard heaters," Applied Energy, Elsevier, vol. 336(C).
    10. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    11. Yang, Wangwang & Shi, Jing & Li, Shujian & Song, Zhaofang & Zhang, Zitong & Chen, Zexu, 2022. "A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior," Applied Energy, Elsevier, vol. 307(C).
    12. Klaus Rheinberger & Peter Kepplinger & Markus Preißinger, 2021. "Flexibility Control in Autonomous Demand Response by Optimal Power Tracking," Energies, MDPI, vol. 14(12), pages 1-14, June.
    13. Tamás Kis & András Kovács & Csaba Mészáros, 2021. "On Optimistic and Pessimistic Bilevel Optimization Models for Demand Response Management," Energies, MDPI, vol. 14(8), pages 1-22, April.
    14. Nebuloni, Riccardo & Meraldi, Lorenzo & Bovo, Cristian & Ilea, Valentin & Berizzi, Alberto & Sinha, Snigdh & Tamirisakandala, Raviteja Bharadwaj & Raboni, Pietro, 2023. "A hierarchical two-level MILP optimization model for the management of grid-connected BESS considering accurate physical model," Applied Energy, Elsevier, vol. 334(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Bo & Wang, Jiexin & Guo, Mengyuan & Lu, Jiayu & Li, Gehui & Han, Liang, 2021. "A hybrid demand response mechanism based on real-time incentive and real-time pricing," Energy, Elsevier, vol. 231(C).
    2. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    3. Xiaofeng Liu & Qi Wang & Wenting Wang, 2019. "Evolutionary Analysis for Residential Consumer Participating in Demand Response Considering Irrational Behavior," Energies, MDPI, vol. 12(19), pages 1-19, September.
    4. Lu, Renzhi & Hong, Seung Ho & Zhang, Xiongfeng, 2018. "A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach," Applied Energy, Elsevier, vol. 220(C), pages 220-230.
    5. Stede, Jan & Arnold, Karin & Dufter, Christa & Holtz, Georg & von Roon, Serafin & Richstein, Jörn C., 2020. "The role of aggregators in facilitating industrial demand response: Evidence from Germany," Energy Policy, Elsevier, vol. 147(C).
    6. Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
    7. Li, Bei & Roche, Robin & Paire, Damien & Miraoui, Abdellatif, 2019. "A price decision approach for multiple multi-energy-supply microgrids considering demand response," Energy, Elsevier, vol. 167(C), pages 117-135.
    8. Jeddi, Babak & Mishra, Yateendra & Ledwich, Gerard, 2021. "Distributed load scheduling in residential neighborhoods for coordinated operation of multiple home energy management systems," Applied Energy, Elsevier, vol. 300(C).
    9. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    10. Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
    11. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    12. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    13. Lu, Qing & Lü, Shuaikang & Leng, Yajun, 2019. "A Nash-Stackelberg game approach in regional energy market considering users’ integrated demand response," Energy, Elsevier, vol. 175(C), pages 456-470.
    14. Lu, Xiaoxing & Li, Kangping & Xu, Hanchen & Wang, Fei & Zhou, Zhenyu & Zhang, Yagang, 2020. "Fundamentals and business model for resource aggregator of demand response in electricity markets," Energy, Elsevier, vol. 204(C).
    15. Máximo A. Domínguez-Garabitos & Víctor S. Ocaña-Guevara & Félix Santos-García & Adriana Arango-Manrique & Miguel Aybar-Mejía, 2022. "A Methodological Proposal for Implementing Demand-Shifting Strategies in the Wholesale Electricity Market," Energies, MDPI, vol. 15(4), pages 1-28, February.
    16. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
    17. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    18. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    19. Xu, Jiuping & Liu, Tingting, 2020. "Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development," Energy Policy, Elsevier, vol. 142(C).
    20. Ayman Esmat & Julio Usaola & María Ángeles Moreno, 2018. "Distribution-Level Flexibility Market for Congestion Management," Energies, MDPI, vol. 11(5), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920313246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.