IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10051-d887701.html
   My bibliography  Save this article

Spatial-Temporal Changes of Carbon Source/Sink in Terrestrial Vegetation Ecosystem and Response to Meteorological Factors in Yangtze River Delta Region (China)

Author

Listed:
  • Chen Zou

    (College of Geography and Tourism, Anhui Normal University, Wuhu 241002, China
    College of Computer and Information Engineering, Chuzhou University, Chuzhou 239000, China)

  • Hu Li

    (College of Geography and Tourism, Anhui Normal University, Wuhu 241002, China)

  • Donghua Chen

    (College of Geography and Tourism, Anhui Normal University, Wuhu 241002, China
    College of Computer and Information Engineering, Chuzhou University, Chuzhou 239000, China)

  • Jingwei Fan

    (College of Computer and Information Engineering, Chuzhou University, Chuzhou 239000, China
    College of Geography and Tourism, Xinjiang Normal University, Urumqi 830054, China)

  • Zhihong Liu

    (College of Computer and Information Engineering, Chuzhou University, Chuzhou 239000, China
    College of Geography and Tourism, Xinjiang Normal University, Urumqi 830054, China)

  • Xuelian Xu

    (College of Computer and Information Engineering, Chuzhou University, Chuzhou 239000, China)

  • Jiani Li

    (College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China)

  • Zuo Wang

    (College of Geography and Tourism, Anhui Normal University, Wuhu 241002, China)

Abstract

As an important part and the core link of a terrestrial ecosystem, terrestrial vegetation is the main means for human to regulate climate and mitigate the increase in atmospheric CO 2 concentration. The Yangtze River Delta (YRD) region is an urban agglomeration with the strongest comprehensive strength among developing countries (China). In the context of global climate change, a rapid, comprehensive, and detailed understanding of the spatio-temporal characteristics and variation tendency of the net ecosystem productivity ( NEP ) of vegetation and its response to climate during the rapid development of the YRD region is important for protecting ecological land, strengthening land management, and optimizing urban planning. The monthly mean temperature and rainfall data from 63 meteorological stations, the MODIS net primary productivity product, and a land cover product in the YRD region were used to estimate the NEP from 2000 to 2019 based on the soil respiration model, and the correlation between NEP and meteorological factors (such as temperature and rainfall) was analyzed. The results showed that: (1) From 2000 to 2019, the carbon sink area was much larger than the carbon source area in terrestrial vegetation in the Yangtze River Delta, the mean NEP of the vegetation ecosystem in the past 20 years was 253.2 g C·m −2 ·a −1 , and the spatial distribution presented a trend that was higher in the south and lower in the north, higher in the east and lower in the west, and that gradually increased from northwest to southeast; moreover, the NEP of mountain areas was generally higher than that of river courses and urban surroundings. The interannual fluctuation of NEP was small, but presented a slightly increasing trend, and the interannual variation of NEP was significantly correlated with the maximum NEP in this region. (2) The carbon sink capacity of different vegetation cover types was (from strong to weak): forestlands > grasslands > wetlands ≈ croplands. (3) The area with the NEP change rate ( θ slope ) > 0 accounted for 69.0%; however, there was certain spatial difference, the proportions of the areas with θ slope < 0 were (from large to small) 14.50% (Zhejiang Province, China), 9.10% (Anhui Province, China), 6.65% (Jiangsu Province, China), and 0.79% (Shanghai, China). In terms of the individual changes of these provinces and municipalities, Shanghai > Zhejiang Province > Jiangsu Province ≈ Anhui Province. (4) There was a correlation between NEP and the annual mean temperature and annual precipitation in some regions.

Suggested Citation

  • Chen Zou & Hu Li & Donghua Chen & Jingwei Fan & Zhihong Liu & Xuelian Xu & Jiani Li & Zuo Wang, 2022. "Spatial-Temporal Changes of Carbon Source/Sink in Terrestrial Vegetation Ecosystem and Response to Meteorological Factors in Yangtze River Delta Region (China)," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10051-:d:887701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10051/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10051/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mingkui Cao & F. Ian Woodward, 1998. "Dynamic responses of terrestrial ecosystem carbon cycling to global climate change," Nature, Nature, vol. 393(6682), pages 249-252, May.
    2. Aboumahboub, Tino & Schaber, Katrin & Wagner, Ulrich & Hamacher, Thomas, 2012. "On the CO2 emissions of the global electricity supply sector and the influence of renewable power-modeling and optimization," Energy Policy, Elsevier, vol. 42(C), pages 297-314.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiarui & Jørgensen, Sven E. & Lu, Jianjian & Nielsen, Søren N. & Wang, Qiang, 2014. "A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming," Ecological Modelling, Elsevier, vol. 294(C), pages 105-116.
    2. John Reilly & David Schimmelpfennig, 2000. "Irreversibility, Uncertainty, and Learning: Portraits of Adaptation to Long-Term Climate Change," Climatic Change, Springer, vol. 45(1), pages 253-278, April.
    3. Klaus Keller & Kelvin Tan & Francois M.M. Morel & David F. Bradford, 1999. "Preserving the Ocean Circulation: Implications for Climate Policy," CESifo Working Paper Series 199, CESifo.
    4. Cech, Marek, 2016. "Panel regression analysis of electricity prices and renewable energy in the European Union," MPRA Paper 74601, University Library of Munich, Germany.
    5. M. Jonas & S. Nilsson & A. Shvidenko & V. Stolbovoi & M. Gluck & M. Obersteiner & A. Oeskog, 1999. "Full Carbon Accounting and the Kyoto Protocol: A Systems- Analytical View," Working Papers ir99025, International Institute for Applied Systems Analysis.
    6. Nguyen Van Hiep & Nguyen Thi Thanh Thao & Luong Van Viet & Huynh Cong Luc & Le Huy Ba, 2023. "Affecting of Nature and Human Activities on the Trend of Vegetation Health Indices in Dak Nong Province, Vietnam," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    7. Li Yu & Fengxue Gu & Mei Huang & Bo Tao & Man Hao & Zhaosheng Wang, 2020. "Impacts of 1.5 °C and 2 °C Global Warming on Net Primary Productivity and Carbon Balance in China’s Terrestrial Ecosystems," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    8. Liu, Min & He, Honglin & Ren, Xiaoli & Sun, Xiaomin & Yu, Guirui & Han, Shijie & Wang, Huimin & Zhou, Guoyi, 2015. "The effects of constraining variables on parameter optimization in carbon and water flux modeling over different forest ecosystems," Ecological Modelling, Elsevier, vol. 303(C), pages 30-41.
    9. Santillán Soto, Néstor & García Cueto, O. Rafael & Ojeda Benítez, Sara & Lambert Arista, Alejandro Adolfo, 2014. "Photovoltaic low power systems and their environmental impact:Yuma, Arizona, U.S.A. case study and projections for Mexicali, Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 172-177.
    10. Zhang, Yan & Li, Juan & Fath, Brian D. & Zheng, Hongmei & Xia, Linlin, 2015. "Analysis of urban carbon metabolic processes and a description of sectoral characteristics: A case study of Beijing," Ecological Modelling, Elsevier, vol. 316(C), pages 144-154.
    11. Imam Basuki & J. B. Kauffman & James Peterson & Gusti Anshari & Daniel Murdiyarso, 2019. "Land cover changes reduce net primary production in tropical coastal peatlands of West Kalimantan, Indonesia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(4), pages 557-573, April.
    12. Meyer, Rachelle S. & Cullen, Brendan R. & Whetton, Penny H. & Robertson, Fiona A. & Eckard, Richard J., 2018. "Potential impacts of climate change on soil organic carbon and productivity in pastures of south eastern Australia," Agricultural Systems, Elsevier, vol. 167(C), pages 34-46.
    13. Na Li & Gaodi Xie & Changshun Zhang & Yu Xiao & Biao Zhang & Wenhui Chen & Yanzhi Sun & Shuo Wang, 2015. "Biomass Resources Distribution in the Terrestrial Ecosystem of China," Sustainability, MDPI, vol. 7(7), pages 1-17, July.
    14. Wang, Zhaoqi, 2019. "Estimating of terrestrial carbon storage and its internal carbon exchange under equilibrium state," Ecological Modelling, Elsevier, vol. 401(C), pages 94-110.
    15. Huang, Yuan & Yu, Qiang & Wang, Ruirui, 2021. "Driving factors and decoupling effect of carbon footprint pressure in China: Based on net primary production," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    16. Smith, Jo & Nayak, Dali Rani & Smith, Pete, 2014. "Wind farms on undegraded peatlands are unlikely to reduce future carbon emissions," Energy Policy, Elsevier, vol. 66(C), pages 585-591.
    17. Pratama, Yoga Wienda & Purwanto, Widodo Wahyu & Tezuka, Tetsuo & McLellan, Benjamin Craig & Hartono, Djoni & Hidayatno, Akhmad & Daud, Yunus, 2017. "Multi-objective optimization of a multiregional electricity system in an archipelagic state: The role of renewable energy in energy system sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 423-439.
    18. Cho, Jaeil & Oki, Taikan & Yeh, Pat J.-F. & Kanae, Shinjiro & Kim, Wonsik, 2010. "The effect of estimated PAR uncertainties on the physiological processes of biosphere models," Ecological Modelling, Elsevier, vol. 221(12), pages 1575-1579.
    19. Moreno-Cruz, Juan B. & Smulders, Sjak, 2017. "Revisiting the economics of climate change: the role of geoengineering," Research in Economics, Elsevier, vol. 71(2), pages 212-224.
    20. Shanin, Vladimir & Komarov, Alexander & Khoraskina, Yulia & Bykhovets, Sergey & Linkosalo, Tapio & Mäkipää, Raisa, 2013. "Carbon turnover in mixed stands: Modelling possible shifts under climate change," Ecological Modelling, Elsevier, vol. 251(C), pages 232-245.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10051-:d:887701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.