IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9656-d881503.html
   My bibliography  Save this article

Utilizing the Harvesting of Rainwater to Provide Safe Road Transportation Efficiency and Increase Water Resources in the Context of Climatic Change

Author

Listed:
  • Mohamed Elsayed Gabr

    (Civil Engineering Department, Higher Institute for Engineering and Technology, Ministry of Higher Education, New Damietta 12588, Egypt)

  • Amira Mahmoud El Shorbagy

    (Civil Engineering Department, Higher Institute for Engineering and Technology, Ministry of Higher Education, New Damietta 12588, Egypt
    Civil Engineering Department, Faculty of Engineering, Minia University, Minia 61519, Egypt)

  • Hamdy Badee Faheem

    (Highway and Traffic Engineering, Civil Engineering Department, Faculty of Engineering, Minia University, Minia 61519, Egypt)

Abstract

This research investigates the effect of heavy rain on highway traffic volume and average speed, and proposes a recharging well harvesting system as an alternative freshwater source in the context of climate change. The Cairo Autostorad highway was taken as a case study. The highway climate data were collected, and traffic was measured using Metrocount equipment during the period from 2008 to 2020. The results show that the studied road is about 12 km long, and about 40 water ponds exist along the route. Each pond has an estimated water volume of 300 m 3 , and a 30 cm recharging well, with a maximum recharging capacity of 25 m 3 /h with satisfactory performance, is recommended to be constructed for rainwater harvesting. The recharging wells will clear the ponding volume within 2.5 to 3.5 h after the rainfall has stopped. The design incorporates a 1.2 safety factor against blockage inside the well. In addition, a model was established between the average rainfall depth and the average measured highway speed for the period (2008–2020) during rainy months, indicating an exponential function with a determination factor R 2 = 0.7076. The present rainfall (2020) and the representative concentration path (RCP) for 4.5 and 8.5 emissions scenarios were used to simulate the rainfall for future years: the 2040s, 2060s, 2080s, and 2100s. The results show that in the winter season for the current scenario (2020), the average rainfall depth was 45 mm, and the highway speed was 78 km/h. For the RCP 4.5 emission scenarios for the 2040s, 2060s, 2080s, and 2100s, the rainfall depths were 67.8, 126.4, 131.2, and 143.9 mm, and the corresponding reductions in the highway speeds were 23, 34, 35.3, and 36.9%, respectively, compared to the baseline scenario (2020). On the other hand, the RCP 8.5 emission scenarios show a reduction in the highway speed of 23, 34.5, 36.9, and 36.9% for the years 2040, 2060, 2080, and 2100, respectively, due to rainfall depths of 68.7, 128.4, 143.9, and 143.9 mm, respectively. This study helps policymakers to make wise decisions regarding sustainable water resource management and highway traffic problems related to rainwater depths in the context of climate change.

Suggested Citation

  • Mohamed Elsayed Gabr & Amira Mahmoud El Shorbagy & Hamdy Badee Faheem, 2022. "Utilizing the Harvesting of Rainwater to Provide Safe Road Transportation Efficiency and Increase Water Resources in the Context of Climatic Change," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9656-:d:881503
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9656/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9656/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marijo Vidas & Vladan Tubić & Ivan Ivanović & Marko Subotić, 2022. "One Approach to Quantifying Rainfall Impact on the Traffic Flow of a Specific Freeway Segment," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    2. Charlie Wilson & Céline Guivarch & Elmar Kriegler & Bas Ruijven & Detlef P. Vuuren & Volker Krey & Valeria Jana Schwanitz & Erica L. Thompson, 2021. "Evaluating process-based integrated assessment models of climate change mitigation," Climatic Change, Springer, vol. 166(1), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustafa El-Rawy & Heba Fathi & Wouter Zijl & Fahad Alshehri & Sattam Almadani & Faisal K. Zaidi & Mofleh Aldawsri & Mohamed Elsayed Gabr, 2023. "Potential Effects of Climate Change on Agricultural Water Resources in Riyadh Region, Saudi Arabia," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    2. Mohamed Elsayed Gabr & Amira Mahmoud El Shorbagy & Hamdy Badee Faheem, 2023. "Assessment of Stormwater Quality in the Context of Traffic Congestion: A Case Study in Egypt," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    3. He, Xin & Xu, Xinwei & Shen, Yu, 2023. "How climate change affects enterprise inventory management —— From the perspective of regional traffic," Journal of Business Research, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    2. He, Xin & Xu, Xinwei & Shen, Yu, 2023. "How climate change affects enterprise inventory management —— From the perspective of regional traffic," Journal of Business Research, Elsevier, vol. 162(C).
    3. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    4. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    5. Clare Hanmer & Charlie Wilson & Oreane Y. Edelenbosch & Detlef P. van Vuuren, 2022. "Translating Global Integrated Assessment Model Output into Lifestyle Change Pathways at the Country and Household Level," Energies, MDPI, vol. 15(5), pages 1-31, February.
    6. Parrado-Hernando, Gonzalo & Herc, Luka & Feijoo, Felipe & Capellán-Pérez, Iñigo, 2024. "Capturing features of hourly-resolution energy models in an integrated assessment model: An application to the EU27 region," Energy, Elsevier, vol. 304(C).
    7. Heinisch, Verena & Dujardin, Jérôme & Gabrielli, Paolo & Jain, Pranjal & Lehning, Michael & Sansavini, Giovanni & Sasse, Jan-Philipp & Schaffner, Christian & Schwarz, Marius & Trutnevyte, Evelina, 2023. "Inter-comparison of spatial models for high shares of renewable electricity in Switzerland," Applied Energy, Elsevier, vol. 350(C).
    8. Ken Oshiro & Shinichiro Fujimori, 2024. "Limited impact of hydrogen co-firing on prolonging fossil-based power generation under low emissions scenarios," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2023. "Hindcasting to inform the development of bottom-up electricity system models: The cases of endogenous demand and technology learning," Applied Energy, Elsevier, vol. 340(C).
    10. da Silva Neves, Marcus Vinicius & Szklo, Alexandre & Schaeffer, Roberto, 2023. "Fossil fuel facilities exergy return for a frontier of analysis incorporating CO2 capture: The case of a coal power plant," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9656-:d:881503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.