IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9628-d880891.html
   My bibliography  Save this article

Management Assessment and Future Projections of Construction and Demolition Waste Generation in Hai Phong City, Vietnam

Author

Listed:
  • Kien Ton Tong

    (Building Materials Faculty, Hanoi University of Civil Engineering, No. 55 Giai Phong Street, Hai Ba Trung District, Hanoi 100000, Vietnam
    Innovative Solid Waste Solutions (Waso), Hanoi University of Civil Engineering, No. 55 Giai Phong Road, Hai Ba Trung District, Hanoi 100000, Vietnam)

  • Ngoc Tan Nguyen

    (Innovative Solid Waste Solutions (Waso), Hanoi University of Civil Engineering, No. 55 Giai Phong Road, Hai Ba Trung District, Hanoi 100000, Vietnam
    Faculty of Building and Industrial Construction, Hanoi University of Civil Engineering, No. 55 Giai Phong Street, Hai Ba Trung District, Hanoi 100000, Vietnam)

  • Giang Hoang Nguyen

    (Innovative Solid Waste Solutions (Waso), Hanoi University of Civil Engineering, No. 55 Giai Phong Road, Hai Ba Trung District, Hanoi 100000, Vietnam
    Faculty of Building and Industrial Construction, Hanoi University of Civil Engineering, No. 55 Giai Phong Street, Hai Ba Trung District, Hanoi 100000, Vietnam)

  • Tomonori Ishigaki

    (Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan)

  • Ken Kawamoto

    (Innovative Solid Waste Solutions (Waso), Hanoi University of Civil Engineering, No. 55 Giai Phong Road, Hai Ba Trung District, Hanoi 100000, Vietnam
    Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan)

Abstract

Along with economic development, urbanization will generate a large amount of solid waste and put pressure on the waste management systems in developing countries. Face-to-face interview methods were used to investigate the current status of construction and demolition waste (CDW) management (collection, transportation, treatment, and storage) as well as reveal attitudes of governmental agencies and enterprises towards CDW recycling and recycled material products in Hai Phong City, Vietnam. Waste generation rates (WGRs) of the works were also determined by site surveys and as-built drawings method of typical old buildings to be demolished and two licensed new construction works. WGRs of 34.5 kg/m 2 and 758 kg/m 2 were identified during the construction and demolition of small private houses, respectively, while WGRs at public house demolition sites were 1053 kg/m 2 . To effectively manage the CDW, the gross floor area of new construction work was estimated by a multiple regression equation with the population and gross region domestic product growth. Based on this model combining the investigation results, the amount of CDW increase in 5–30 years is also predicted. This data set will help management agencies plan storage yards as well as select the appropriate CDW treatment and recycling methods, contributing to building a sustainable and effective CDW management model for Hai Phong City as well as Vietnam in the future.

Suggested Citation

  • Kien Ton Tong & Ngoc Tan Nguyen & Giang Hoang Nguyen & Tomonori Ishigaki & Ken Kawamoto, 2022. "Management Assessment and Future Projections of Construction and Demolition Waste Generation in Hai Phong City, Vietnam," Sustainability, MDPI, vol. 14(15), pages 1-29, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9628-:d:880891
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9628/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9628/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hoang Giang Nguyen & Dung Tien Nguyen & Ha Tan Nghiem & Viet Cuong Tran & Akira Kato & Akihiro Matsuno & Yugo Isobe & Mikio Kawasaki & Ken Kawamoto, 2021. "Current Management Condition and Waste Composition Characteristics of Construction and Demolition Waste Landfills in Hanoi of Vietnam," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    2. Chi Sun Poon & Ann Tit Wan Yu & Sze Wai Wong & Esther Cheung, 2004. "Management of construction waste in public housing projects in Hong Kong," Construction Management and Economics, Taylor & Francis Journals, vol. 22(7), pages 675-689.
    3. Håvard Bergsdal & Rolf André Bohne & Helge Brattebø, 2007. "Projection of Construction and Demolition Waste in Norway," Journal of Industrial Ecology, Yale University, vol. 11(3), pages 27-39, July.
    4. Chi Sun Poon & Ann Tit Wan Yu & Siu Ching See & Esther Cheung, 2004. "Minimizing demolition wastes in Hong Kong public housing projects," Construction Management and Economics, Taylor & Francis Journals, vol. 22(8), pages 799-805, October.
    5. Liang Qiao & Doudou Liu & Xueliang Yuan & Qingsong Wang & Qiao Ma, 2020. "Generation and Prediction of Construction and Demolition Waste Using Exponential Smoothing Method: A Case Study of Shandong Province, China," Sustainability, MDPI, vol. 12(12), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongmei Liu & Rong Guo & Junjie Tian & Honghao Sun & Yi Wang & Haiyan Li & Lu Yao, 2022. "Quantifying the Carbon Reduction Potential of Recycling Construction Waste Based on Life Cycle Assessment: A Case of Jiangsu Province," IJERPH, MDPI, vol. 19(19), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Weisheng & Yuan, Hongping, 2010. "Exploring critical success factors for waste management in construction projects of China," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 201-208.
    2. Li, Jingru & Ding, Zhikun & Mi, Xuming & Wang, Jiayuan, 2013. "A model for estimating construction waste generation index for building project in China," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 20-26.
    3. Vivian Wing-Yan Tam & Weisheng Lu, 2016. "Construction Waste Management Profiles, Practices, and Performance: A Cross-Jurisdictional Analysis in Four Countries," Sustainability, MDPI, vol. 8(2), pages 1-16, February.
    4. Zhang, Xiaoling & Wu, Yuzhe & Shen, Liyin, 2012. "Application of low waste technologies for design and construction: A case study in Hong Kong," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2973-2979.
    5. Li, Yashuai & Zhang, Xueqing & Ding, Guoyu & Feng, Zhouquan, 2016. "Developing a quantitative construction waste estimation model for building construction projects," Resources, Conservation & Recycling, Elsevier, vol. 106(C), pages 9-20.
    6. Zhikun Ding & Mengjie Shi & Chen Lu & Zezhou Wu & Dan Chong & Wenyan Gong, 2019. "Predicting Renovation Waste Generation Based on Grey System Theory: A Case Study of Shenzhen," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    7. Ayodeji Emmanuel Oke & Ahmed Farouk Kineber & Mohamed Elseknidy & Fakunle Samuel Kayode, 2023. "Radio frequency identification implementation model for sustainable development: A structural equation modeling approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1824-1844, June.
    8. Satheeskumar Navaratnam, 2022. "Selecting a Suitable Sustainable Construction Method for Australian High-Rise Building: A Multi-Criteria Analysis," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    9. Udawatta, Nilupa & Zuo, Jian & Chiveralls, Keri & Zillante, George, 2015. "Improving waste management in construction projects: An Australian study," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 73-83.
    10. Esa, Mohd Reza & Halog, Anthony & Rigamonti, Lucia, 2017. "Strategies for minimizing construction and demolition wastes in Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 219-229.
    11. Gi-Wook Cha & Young-Chan Kim & Hyeun Jun Moon & Won-Hwa Hong, 2017. "The Effects of Data Collection Method and Monitoring of Workers’ Behavior on the Generation of Demolition Waste," IJERPH, MDPI, vol. 14(10), pages 1-14, October.
    12. Dong Yang & Mengyuan Dang & Lingwen Sun & Feng Han & Feng Shi & Hongbo Zhang & Hongjun Zhang, 2021. "A System Dynamics Model for Urban Residential Building Stock towards Sustainability: The Case of Jinan, China," IJERPH, MDPI, vol. 18(18), pages 1-23, September.
    13. Hong Nam Thai & Ken Kawamoto & Hoang Giang Nguyen & Toshihiro Sakaki & Toshiko Komatsu & Per Moldrup, 2022. "Measurements and Modeling of Thermal Conductivity of Recycled Aggregates from Concrete, Clay Brick, and Their Mixtures with Autoclaved Aerated Concrete Grains," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    14. Dongchen Han & Mohsen Kalantari & Abbas Rajabifard, 2021. "Building Information Modeling (BIM) for Construction and Demolition Waste Management in Australia: A Research Agenda," Sustainability, MDPI, vol. 13(23), pages 1-22, November.
    15. Chen, Rong-Hui & Lin, Yuanhsu & Tseng, Ming-Lang, 2015. "Multicriteria analysis of sustainable development indicators in the construction minerals industry in China," Resources Policy, Elsevier, vol. 46(P1), pages 123-133.
    16. Lu, Weisheng & Webster, Chris & Chen, Ke & Zhang, Xiaoling & Chen, Xi, 2017. "Computational Building Information Modelling for construction waste management: Moving from rhetoric to reality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 587-595.
    17. Filipe Almeida & Castorina S. Vieira & José Ricardo Carneiro & Maria de Lurdes Lopes, 2022. "Drawing a Path towards Circular Construction: An Approach to Engage Stakeholders," Sustainability, MDPI, vol. 14(9), pages 1-13, April.
    18. Luiz Maurício Maués & Norma Beltrão & Isabela Silva, 2021. "GHG Emissions Assessment of Civil Construction Waste Disposal and Transportation Process in the Eastern Amazon," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    19. Lilliana Abarca-Guerrero & Susi Lobo-Ugalde & Nicole Méndez-Carpio & Rosibel Rodríguez-Leandro & Victoria Rudin-Vega, 2022. "Zero Waste Systems: Barriers and Measures to Recycling of Construction and Demolition Waste," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    20. Chung, Shan Shan, 2010. "Projecting municipal solid waste: The case of Hong Kong SAR," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 759-768.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9628-:d:880891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.