IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9060-d870258.html
   My bibliography  Save this article

An Efficient Fault Detection Method for Induction Motors Using Thermal Imaging and Machine Vision

Author

Listed:
  • Muhammad Rameez Javed

    (Department of Electrical, Electronics and Telecommunication Engineering, University of Engineering and Technology, Faisalabad Campus, Lahore 38000, Pakistan
    School of Electrical Engineering, Southeast University, Xuanwu District, Nanjing 210096, China)

  • Zain Shabbir

    (Department of Electrical, Electronics and Telecommunication Engineering, University of Engineering and Technology, Faisalabad Campus, Lahore 38000, Pakistan)

  • Furqan Asghar

    (Department of Energy Systems Engineering, University of Agriculture, Faisalabad 38000, Pakistan)

  • Waseem Amjad

    (Department of Energy Systems Engineering, University of Agriculture, Faisalabad 38000, Pakistan)

  • Faisal Mahmood

    (Department of Energy Systems Engineering, University of Agriculture, Faisalabad 38000, Pakistan)

  • Muhammad Omer Khan

    (Department of Electrical Engineering & Technology, Riphah International University, Faisalabad 38000, Pakistan)

  • Umar Siddique Virk

    (Department of Mechatronics and Control Engineering, University of Engineering and Technology, Faisalabad Campus, Lahore 38000, Pakistan)

  • Aashir Waleed

    (Department of Electrical, Electronics and Telecommunication Engineering, University of Engineering and Technology, Faisalabad Campus, Lahore 38000, Pakistan)

  • Zunaib Maqsood Haider

    (Department of Electrical Engineering, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan)

Abstract

Induction motors (IMs) are the backbone of industry, and play a vital role in daily life as well. However, induction motors face various faults during their operation, which may cause overheating, energy losses, and failure in the motors. Keeping in mind the severity of the issues associated with fault occurrence, this paper proposes a novel method of fault detection in induction motors by using “Machine Vision (MV)” along with “Infrared Thermography (IRT)”. It is worth mentioning that the timely prevention of faults in the IM ensures the motor’s safety from failures, and provides longer service life. In this work, a dataset of thermal images of an induction motor under different conditions (i.e., normal operation, overloaded, and fault) was developed using an infrared camera without disturbing the working condition of the motor. Then, the extracted thermal images were effectively used for the feature extraction and training by local octa pattern (LOP) and support-vector machine (SVM) classifiers, respectively. In order to enhance the quality of feature extraction from images, the LOP was implemented along with a genetic algorithm (GA). Finally, the proposed methodology was implemented and validated by detecting the faults introduced in an induction motor in real time. In addition to that, a comparative study of the suggested methodology with existing methods also verified the supremacy and effectiveness of the proposed method in comparison to the previous techniques.

Suggested Citation

  • Muhammad Rameez Javed & Zain Shabbir & Furqan Asghar & Waseem Amjad & Faisal Mahmood & Muhammad Omer Khan & Umar Siddique Virk & Aashir Waleed & Zunaib Maqsood Haider, 2022. "An Efficient Fault Detection Method for Induction Motors Using Thermal Imaging and Machine Vision," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9060-:d:870258
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9060/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9060/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Irfan Ullah & Fan Yang & Rehanullah Khan & Ling Liu & Haisheng Yang & Bing Gao & Kai Sun, 2017. "Predictive Maintenance of Power Substation Equipment by Infrared Thermography Using a Machine-Learning Approach," Energies, MDPI, vol. 10(12), pages 1-13, December.
    2. Tsanakas, John A. & Ha, Long & Buerhop, Claudia, 2016. "Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 695-709.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gopu Venugopal & Arun Kumar Udayakumar & Adhavan Balashanmugham & Mohamad Abou Houran & Faisal Alsaif & Rajvikram Madurai Elavarasan & Kannadasan Raju & Mohammed H. Alsharif, 2023. "Fault Identification and Classification of Asynchronous Motor Drive Using Optimization Approach with Improved Reliability," Energies, MDPI, vol. 16(6), pages 1-25, March.
    2. Attallah, Omneya & Ibrahim, Rania A. & Zakzouk, Nahla E., 2023. "CAD system for inter-turn fault diagnosis of offshore wind turbines via multi-CNNs & feature selection," Renewable Energy, Elsevier, vol. 203(C), pages 870-880.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Zschech & Kai Heinrich & Raphael Bink & Janis S. Neufeld, 2019. "Prognostic Model Development with Missing Labels," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 327-343, June.
    2. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    3. Osni Silva Junior & Jose Carlos Pereira Coninck & Fabiano Gustavo Silveira Magrin & Francisco Itamarati Secolo Ganacim & Anselmo Pombeiro & Leonardo Göbel Fernandes & Eduardo Félix Ribeiro Romaneli, 2023. "Impacts of Atmospheric and Load Conditions on the Power Substation Equipment Temperature Model," Energies, MDPI, vol. 16(11), pages 1-15, May.
    4. Chiwu Bu & Tao Liu & Tao Wang & Hai Zhang & Stefano Sfarra, 2023. "A CNN-Architecture-Based Photovoltaic Cell Fault Classification Method Using Thermographic Images," Energies, MDPI, vol. 16(9), pages 1-13, April.
    5. Olcay Özge Ersöz & Ali Fırat İnal & Adnan Aktepe & Ahmet Kürşad Türker & Süleyman Ersöz, 2022. "A Systematic Literature Review of the Predictive Maintenance from Transportation Systems Aspect," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    6. Lixiao Mu & Xiaobing Xu & Zhanran Xia & Bin Yang & Haoran Guo & Wenjun Zhou & Chengke Zhou, 2021. "Autonomous Analysis of Infrared Images for Condition Diagnosis of HV Cable Accessories," Energies, MDPI, vol. 14(14), pages 1-15, July.
    7. Hong, Ying-Yi & Pula, Rolando A., 2022. "Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network," Energy, Elsevier, vol. 246(C).
    8. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Arnaldo Rabello de Aguiar Vallim Filho & Daniel Farina Moraes & Marco Vinicius Bhering de Aguiar Vallim & Leilton Santos da Silva & Leandro Augusto da Silva, 2022. "A Machine Learning Modeling Framework for Predictive Maintenance Based on Equipment Load Cycle: An Application in a Real World Case," Energies, MDPI, vol. 15(10), pages 1-41, May.
    10. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    11. Kyoik Choi & Jangwon Suh, 2023. "Fault Detection and Power Loss Assessment for Rooftop Photovoltaics Installed in a University Campus, by Use of UAV-Based Infrared Thermography," Energies, MDPI, vol. 16(11), pages 1-16, June.
    12. Nouha Mansouri & Abderezak Lashab & Dezso Sera & Josep M. Guerrero & Adnen Cherif, 2019. "Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions," Energies, MDPI, vol. 12(19), pages 1-16, October.
    13. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    14. Aline Kirsten Vidal de Oliveira & Mohammadreza Aghaei & Ricardo Rüther, 2022. "Automatic Inspection of Photovoltaic Power Plants Using Aerial Infrared Thermography: A Review," Energies, MDPI, vol. 15(6), pages 1-24, March.
    15. Carlo Olivieri & Francesco de Paulis & Antonio Orlandi & Giorgio Giannuzzi & Roberto Salvati & Roberto Zaottini & Carlo Morandini & Lorenzo Mocarelli, 2019. "Remote Monitoring of Joints Status on In-Service High-Voltage Overhead Lines," Energies, MDPI, vol. 12(6), pages 1-17, March.
    16. Pía Vásquez & Ignacia Devoto & Pablo Ferrada & Abel Taquichiri & Carlos Portillo & Rodrigo Palma-Behnke, 2021. "Inspection Data Collection Tool for Field Testing of Photovoltaic Modules in the Atacama Desert," Energies, MDPI, vol. 14(9), pages 1-24, April.
    17. Romênia G. Vieira & Fábio M. U. de Araújo & Mahmoud Dhimish & Maria I. S. Guerra, 2020. "A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules," Energies, MDPI, vol. 13(10), pages 1-21, May.
    18. Gomathy Balasubramani & Venkatesan Thangavelu & Muniraj Chinnusamy & Umashankar Subramaniam & Sanjeevikumar Padmanaban & Lucian Mihet-Popa, 2020. "Infrared Thermography Based Defects Testing of Solar Photovoltaic Panel with Fuzzy Rule-Based Evaluation," Energies, MDPI, vol. 13(6), pages 1-14, March.
    19. Gallardo-Saavedra, Sara & Hernández-Callejo, Luis & Duque-Perez, Oscar, 2018. "Technological review of the instrumentation used in aerial thermographic inspection of photovoltaic plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 566-579.
    20. Saez, Yago & Mochon, Asuncion & Corona, Luis & Isasi, Pedro, 2019. "Integration in the European electricity market: A machine learning-based convergence analysis for the Central Western Europe region," Energy Policy, Elsevier, vol. 132(C), pages 549-566.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9060-:d:870258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.