IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8953-d868289.html
   My bibliography  Save this article

Spatially Explicit River Basin Models for Cost-Benefit Analyses to Optimize Land Use

Author

Listed:
  • Jawad Ghafoor

    (Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium)

  • Marie Anne Eurie Forio

    (Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium)

  • Peter L. M. Goethals

    (Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium)

Abstract

Recently, a wide range of models have been used in analyzing the costs and benefits of land utilization in river basins. Despite these advances, there is not enough information on how to select appropriate models to perform cost-benefit analyses. A literature search in the Web of Science (WOS) online database was implemented and resulted in the selection of 27 articles that utilized models to perform cost-benefit analyses of river basins. The models reviewed in these papers were categorized into five types: process-based, statistical, probabilistic, data-driven, and modeling frameworks or integrated models. Twenty-six models were reviewed based on their data and input variable needs and user convenience. A SWOT analysis was also performed to highlight the strengths, weaknesses, opportunities, and threats of these models. One of the main strengths is their ability to perform scenario-based analyses while the main drawback is the limited availability of data impeding the use of the models. We found that, to some extent, there is an increase in model applicability as the number of input variables increases but there are exceptions to this observation. Future studies should explicitly report on the necessary time needed for data collection, model development and/or training, and model application. This information is highly valuable to users and modelers when choosing which model to use in performing a particular cost-benefit analysis. These models can be developed and applied to assist sustainable development as well as the sustainable utilization of agricultural parcels within a river basin, which can eventually reduce the negative impacts of intensive agriculture and minimize habitat degradation on water resources.

Suggested Citation

  • Jawad Ghafoor & Marie Anne Eurie Forio & Peter L. M. Goethals, 2022. "Spatially Explicit River Basin Models for Cost-Benefit Analyses to Optimize Land Use," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8953-:d:868289
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8953/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8953/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Forio, Marie Anne Eurie & Mouton, Ans & Lock, Koen & Boets, Pieter & Nguyen, Thi Hanh Tien & Damanik Ambarita, Minar Naomi & Musonge, Peace Liz Sasha & Dominguez-Granda, Luis & Goethals, Peter L.M., 2017. "Fuzzy modelling to identify key drivers of ecological water quality to support decision and policy making," Environmental Science & Policy, Elsevier, vol. 68(C), pages 58-68.
    2. Mwambo, Francis Molua & Fürst, Christine & Nyarko, Benjamin K. & Borgemeister, Christian & Martius, Christopher, 2020. "Maize production and environmental costs: Resource evaluation and strategic land use planning for food security in northern Ghana by means of coupled emergy and data envelopment analysis," Land Use Policy, Elsevier, vol. 95(C).
    3. Jahanifar, Komeil & Amirnejad, Hamid & Azadi, Hossein & Adenle, Ademola A. & Scheffran, Jürgen, 2019. "Economic analysis of land use changes in forests and rangelands: Developing conservation strategies," Land Use Policy, Elsevier, vol. 88(C).
    4. Crossman, Neville D. & Connor, Jeffrey D. & Bryan, Brett A. & Summers, David M. & Ginnivan, John, 2010. "Reconfiguring an irrigation landscape to improve provision of ecosystem services," Ecological Economics, Elsevier, vol. 69(5), pages 1031-1042, March.
    5. Massimo Conforti & Gaetano Robustelli & Francesco Muto & Salvatore Critelli, 2012. "Application and validation of bivariate GIS-based landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 127-141, March.
    6. Lina Sun & Wenxi Lu & Qingchun Yang & Jordi Martín & Di Li, 2013. "Ecological Compensation Estimation of Soil and Water Conservation Based on Cost-Benefit Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2709-2727, June.
    7. Chang-Jo Chung & Andrea Fabbri, 2003. "Validation of Spatial Prediction Models for Landslide Hazard Mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 451-472, November.
    8. Brouwer, Roy & van Ek, Remco, 2004. "Integrated ecological, economic and social impact assessment of alternative flood control policies in the Netherlands," Ecological Economics, Elsevier, vol. 50(1-2), pages 1-21, September.
    9. Pan, Ying & Wu, Junxi & Zhang, Yanjie & Zhang, Xianzhou & Yu, Chengqun, 2021. "Simultaneous enhancement of ecosystem services and poverty reduction through adjustments to subsidy policies relating to grassland use in Tibet, China," Ecosystem Services, Elsevier, vol. 48(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Lombardo & M. Cama & M. Maerker & E. Rotigliano, 2014. "A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1951-1989, December.
    2. D. Costanzo & C. Cappadonia & C. Conoscenti & E. Rotigliano, 2012. "Exporting a Google Earth ™ aided earth-flow susceptibility model: a test in central Sicily," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 103-114, March.
    3. Ebrahim Ahmadisharaf & Alfred Kalyanapu & Eun-Sung Chung, 2015. "Evaluating the Effects of Inundation Duration and Velocity on Selection of Flood Management Alternatives Using Multi-Criteria Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2543-2561, June.
    4. Pan, Ying & Wu, Junxi & Zhang, Yanjie & Zhang, Xianzhou & Yu, Chengqun, 2021. "Simultaneous enhancement of ecosystem services and poverty reduction through adjustments to subsidy policies relating to grassland use in Tibet, China," Ecosystem Services, Elsevier, vol. 48(C).
    5. Junqi Li & Haohan Zhang & Xiaoran Zhang & Wenliang Wang, 2023. "Establishment and Application of a Specialized Physical Examination Indicator System for Urban Waterlogging Risk in China," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    6. Hajkowicz, Stefan, 2006. "Taking a closer look at multiple criteria analysis and economic evaluation," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 139785, Australian Agricultural and Resource Economics Society.
    7. Allan Beltrán & David Maddison & Robert J. R. Elliott, 2018. "Assessing the Economic Benefits of Flood Defenses: A Repeat‐Sales Approach," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2340-2367, November.
    8. E. Rotigliano & C. Cappadonia & C. Conoscenti & D. Costanzo & V. Agnesi, 2012. "Slope units-based flow susceptibility model: using validation tests to select controlling factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 143-153, March.
    9. Sebastian Scheuer & Dagmar Haase & Volker Meyer, 2011. "Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnera," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 731-751, August.
    10. David Nortes Martínez & Frédéric Grelot & Pauline Bremond & Stefano Farolfi & Juliette Rouchier, 2021. "Are interactions important in estimating flood damage to economic entities? The case of wine-making in France," Post-Print hal-03609616, HAL.
    11. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    12. Mónica de Castro-Pardo & Pascual Fernández Martínez & Amelia Pérez Zabaleta & João C. Azevedo, 2021. "Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services," Land, MDPI, vol. 10(5), pages 1-32, April.
    13. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    14. Kun Cheng & Qiang Fu & Xi Chen & Tianxiao Li & Qiuxiang Jiang & Xiaosong Ma & Ke Zhao, 2015. "Adaptive Allocation Modeling for a Complex System of Regional Water and Land Resources Based on Information Entropy and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 4977-4993, November.
    15. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," Economic Information Bulletin 327359, United States Department of Agriculture, Economic Research Service.
    16. Xinqi Zheng & Bing Geng & Xiang Wu & Lina Lv & Yecui Hu, 2014. "Performance Evaluation of Industrial Land Policy in China," Sustainability, MDPI, vol. 6(8), pages 1-16, July.
    17. Xin Jiang & Yuyu Liu & Ranhang Zhao, 2019. "A Framework for Ecological Compensation Assessment: A Case Study in the Upper Hun River Basin, Northeast China," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    18. Bark, Rosalind H. & Colloff, Matthew J. & Hatton MacDonald, Darla & Pollino, Carmel A. & Jackson, Sue & Crossman, Neville D., 2016. "Integrated valuation of ecosystem services obtained from restoring water to the environment in a major regulated river basin," Ecosystem Services, Elsevier, vol. 22(PB), pages 381-391.
    19. Jonkman, S.N. & Bockarjova, M. & Kok, M. & Bernardini, P., 2008. "Integrated hydrodynamic and economic modelling of flood damage in the Netherlands," Ecological Economics, Elsevier, vol. 66(1), pages 77-90, May.
    20. Leonidas Sotirios Kyrgiakos & Georgios Kleftodimos & George Vlontzos & Panos M. Pardalos, 2023. "A systematic literature review of data envelopment analysis implementation in agriculture under the prism of sustainability," Operational Research, Springer, vol. 23(1), pages 1-38, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8953-:d:868289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.