IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8901-d867582.html
   My bibliography  Save this article

Corn Starch-Based Sandstone Sustainable Materials: Sand Type and Water Content Effect on Their Structure and Mechanical Properties

Author

Listed:
  • Maria Zoumaki

    (Laboratory for Machine Tools and Manufacturing Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Konstantinos Tsongas

    (Laboratory for Machine Tools and Manufacturing Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Dimitrios Tzetzis

    (Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 57001 Thessaloniki, Greece)

  • Gabriel Mansour

    (Laboratory for Machine Tools and Manufacturing Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

Abstract

A new biodegradable, sustainable and environmentally friendly building material is introduced and studied in this work, which can be applied to lightweight architectural structures, aiming for the reduction of the greenhouse gas emissions and mitigation of the climate change effects. The focus was to investigate the effect of water concentration and different types of sand on the mechanical properties of corn starch-based artificial sandstone. A series of cubic, cylindrical and disk specimens were prepared by varying the concentration of water and using different sources of commercial quartz sand. The quasi-static and cyclic compressive properties of starch-based artificial sandstone samples were measured as a function of water concentration and sand type, while the structure of the artificial sandstone specimens was examined by scanning electron microscopy (SEM) and optical microscopy. Moreover, the Brazilian Test was employed as the indirect method to determine the tensile strength of the samples based on the type of the commercial sand they contained. The experimental results showed that the homogeneous grading of sand grains and the latter’s chemical composition have a significant effect on the mechanical properties of the sandstone samples. The highest compression values were obtained using the microwave heating method at a water concentration of about 12 wt%, while the cyclic compression and Brazilian Tests have shown that the granulometric grading of the sand particles and the chemical composition of the sand influence the compressive and tensile strength of the material.

Suggested Citation

  • Maria Zoumaki & Konstantinos Tsongas & Dimitrios Tzetzis & Gabriel Mansour, 2022. "Corn Starch-Based Sandstone Sustainable Materials: Sand Type and Water Content Effect on Their Structure and Mechanical Properties," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8901-:d:867582
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8901/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8901/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Oudin Åström & Bertil Forsberg & Kristie L. Ebi & Joacim Rocklöv, 2013. "Attributing mortality from extreme temperatures to climate change in Stockholm, Sweden," Nature Climate Change, Nature, vol. 3(12), pages 1050-1054, December.
    2. Yu Wang & Changhong Li & Yanzhi Hu & Tianqiao Mao, 2017. "Brazilian Test for Tensile Failure of Anisotropic Shale under Different Strain Rates at Quasi-static Loading," Energies, MDPI, vol. 10(9), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Mansour & Vasileios Papageorgiou & Maria Zoumaki & Konstantinos Tsongas & Michel T. Mansour & Dimitrios Tzetzis, 2023. "Mechanical Performance of 3D-Printed Cornstarch–Sandstone Sustainable Material," Sustainability, MDPI, vol. 15(11), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing Zhang & Tianjun Zhou & Wenxia Zhang & Liwen Ren & Jie Jiang & Shuai Hu & Meng Zuo & Lixia Zhang & Wenmin Man, 2023. "Increased impact of heat domes on 2021-like heat extremes in North America under global warming," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Zhiyong Tian & Shicong Zhang & Jie Deng & Bozena Dorota Hrynyszyn, 2020. "Evaluation on Overheating Risk of a Typical Norwegian Residential Building under Future Extreme Weather Conditions," Energies, MDPI, vol. 13(3), pages 1-12, February.
    3. Richard S. J. Tol, 2016. "The Impacts Of Climate Change According To The Ipcc," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 1-20, February.
    4. Tamás Hajdu & Gábor Hajdu, 2021. "Post-conception heat exposure increases clinically unobserved pregnancy losses," CERS-IE WORKING PAPERS 2104, Institute of Economics, Centre for Economic and Regional Studies.
    5. Raimi, Daniel, 2021. "Effects of Climate Change on Heat- and Cold-Related Mortality: A Literature Review to Inform Updated Estimates of the Social Cost of Carbon," RFF Working Paper Series 21-12, Resources for the Future.
    6. Jaime Madrigano & Regina A. Shih & Maxwell Izenberg & Jordan R. Fischbach & Benjamin L. Preston, 2021. "Science Policy to Advance a Climate Change and Health Research Agenda in the United States," IJERPH, MDPI, vol. 18(15), pages 1-15, July.
    7. Jae Young Lee & Ejin Kim & Woo-Seop Lee & Yeora Chae & Ho Kim, 2018. "Projection of Future Mortality Due to Temperature and Population Changes under Representative Concentration Pathways and Shared Socioeconomic Pathways," IJERPH, MDPI, vol. 15(4), pages 1-9, April.
    8. Reija Ruuhela & Kirsti Jylhä & Timo Lanki & Pekka Tiittanen & Andreas Matzarakis, 2017. "Biometeorological Assessment of Mortality Related to Extreme Temperatures in Helsinki Region, Finland, 1972–2014," IJERPH, MDPI, vol. 14(8), pages 1-19, August.
    9. Asya Dimitrova & Anna Dimitrova & Matthias Mengel & Antonio Gasparrini & Hermann Lotze-Campen & Sabine Gabrysch, 2024. "Temperature-related neonatal deaths attributable to climate change in 29 low- and middle-income countries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Yong Yuan & Changtai Zhou & Zhihe Wang & Jifang Du, 2018. "Joint Elasticity Effect on the Failure Behaviours of Rock Masses using a Discrete Element Model," Energies, MDPI, vol. 11(11), pages 1-14, November.
    11. Yeora Chae & Jongchul Park, 2021. "Analysis on Effectiveness of Impact Based Heatwave Warning Considering Severity and Likelihood of Health Impacts in Seoul, Korea," IJERPH, MDPI, vol. 18(5), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8901-:d:867582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.