IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8768-d865290.html
   My bibliography  Save this article

Multi-Fracture Synchronous Propagation Mechanism of Multi-Clustered Fracturing in Interlayered Tight Sandstone Reservoir

Author

Listed:
  • Fuchun Tian

    (College of Petroleum Engineering, China University of Petroleum, Beijing 102200, China
    PetroChina Dagang Oilfield Company, Tianjin 300280, China)

  • Yan Jin

    (College of Petroleum Engineering, China University of Petroleum, Beijing 102200, China)

  • Fengming Jin

    (PetroChina Dagang Oilfield Company, Tianjin 300280, China)

  • Xiaonan Ma

    (PetroChina Dagang Oilfield Company, Tianjin 300280, China)

  • Lin Shi

    (College of Petroleum Engineering, China University of Petroleum, Beijing 102200, China)

  • Jun Zhang

    (Department of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China)

  • Dezhi Qiu

    (Guangzhou Marine Geological Survey, Guangzhou 511458, China)

  • Zhuo Zhang

    (School of Ocean and Earth Science, Tongji University, Shanghai 200092, China)

Abstract

A numerical model was established by using the 3D lattice method to investigate the synchronous propagation mechanism of multiple clusters of hydraulic fractures in interlayered tight sandstone reservoirs in the Songliao Basin in China. The multi-fracture synchronous propagation model under different geological factors and fracturing engineering factors was simulated. The results show that the vertical stress difference, interlayer Young’s modulus, and lithologic interface strength are positively correlated with the longitudinal propagation ability of multiple hydraulic fractures. The three clusters of hydraulic fractures can have adequate longitudinal extension capacity and transverse propagation range with 15 m cluster spacing and a 12 m 3 /min pumping rate. The viscosity of the fracturing fluid is positively correlated with the ability of hydraulic fracture to penetrate the interlayer longitudinally but negatively correlated with the transverse propagation length. It is recommended that high viscosity fracturing fluid is used in the early stage of multi-clustered fracturing in interlayered tight sandstone reservoirs to promote hydraulic fractures to penetrate more interlayers and communicate more pay layers in the longitudinal direction, and low viscosity fracturing fluid in the later stage to make multiple clusters of fractures propagate to the far end where possible and obtain a more ideal SRV.

Suggested Citation

  • Fuchun Tian & Yan Jin & Fengming Jin & Xiaonan Ma & Lin Shi & Jun Zhang & Dezhi Qiu & Zhuo Zhang, 2022. "Multi-Fracture Synchronous Propagation Mechanism of Multi-Clustered Fracturing in Interlayered Tight Sandstone Reservoir," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8768-:d:865290
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8768/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8768/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cong, Ziyuan & Li, Yuwei & Pan, Yishan & Liu, Bo & Shi, Ying & Wei, Jianguang & Li, Wei, 2022. "Study on CO2 foam fracturing model and fracture propagation simulation," Energy, Elsevier, vol. 238(PB).
    2. Jianfa Wu & Haoyong Huang & Ersi Xu & Junfeng Li & Xiaohua Wang, 2021. "Numerical Investigation on Propagation Behaviors of a Three-Dimensional Fracture Network Coupled with Microseismicity in Fractured Shale Reservoirs," Energies, MDPI, vol. 14(24), pages 1-19, December.
    3. Yongxiang Zheng & Jianjun Liu & Bohu Zhang, 2019. "An Investigation into the Effects of Weak Interfaces on Fracture Height Containment in Hydraulic Fracturing," Energies, MDPI, vol. 12(17), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peibo Li & Jianguo Wang & Wei Liang & Rui Sun, 2023. "An Analytical and Numerical Analysis for Hydraulic Fracture Propagation through Reservoir Interface in Coal-Measure Superimposed Reservoirs," Sustainability, MDPI, vol. 15(5), pages 1-34, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Song & Zhou, Jian & Zhang, Luqing & Han, Zhenhua & Kong, Yanlong, 2024. "Numerical insight into hydraulic fracture propagation in hot dry rock with complex natural fracture networks via fluid-solid coupling grain-based modeling," Energy, Elsevier, vol. 295(C).
    2. Jiang, Xingwen & Chen, Mian & Li, Qinghui & Liang, Lihao & Zhong, Zhen & Yu, Bo & Wen, Hang, 2022. "Study on the feasibility of the heat treatment after shale gas reservoir hydration fracturing," Energy, Elsevier, vol. 254(PB).
    3. Cao, Meng & Sharma, Mukul M., 2023. "Effect of fracture geometry, topology and connectivity on energy recovery from enhanced geothermal systems," Energy, Elsevier, vol. 282(C).
    4. Wang, Zhoujie & Wang, Peng & Li, Songyan & Cheng, Hao & Zhang, Kaiqiang, 2024. "CO2 foam to enhance geological storage capacity in hydrocarbon reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Zheng, Peng & Xia, Yucheng & Yao, Tingwei & Jiang, Xu & Xiao, Peiyao & He, Zexuan & Zhou, Desheng, 2022. "Formation mechanisms of hydraulic fracture network based on fracture interaction," Energy, Elsevier, vol. 243(C).
    6. Han, Xu & Feng, Fuping & Zhang, Jianwei, 2023. "Study on the whole life cycle integrity of cement interface in heavy oil thermal recovery well under circulating high temperature condition," Energy, Elsevier, vol. 278(PB).
    7. Zhiyu Li & Zhengdong Lei & Weijun Shen & Dmitriy A. Martyushev & Xinhai Hu, 2023. "A Comprehensive Review of the Oil Flow Mechanism and Numerical Simulations in Shale Oil Reservoirs," Energies, MDPI, vol. 16(8), pages 1-23, April.
    8. Huang, Qiming & li, Mingyang & Yan, Yuting & Ni, Guanhua & Guo, Zhiguo, 2023. "Influence mechanism of inorganic salts on coal permeability during foam fracturing," Energy, Elsevier, vol. 276(C).
    9. Yao Wang & Shengjun Li & Rui Song & Jianjun Liu & Min Ye & Shiqi Peng & Yongjun Deng, 2022. "Effects of Grain Size and Layer Thickness on the Physical and Mechanical Properties of 3D-Printed Rock Analogs," Energies, MDPI, vol. 15(20), pages 1-19, October.
    10. Li, Yuwei & Peng, Genbo & Tang, Jizhou & Zhang, Jun & Zhao, Wanchun & Liu, Bo & Pan, Yishan, 2023. "Thermo-hydro-mechanical coupling simulation for fracture propagation in CO2 fracturing based on phase-field model," Energy, Elsevier, vol. 284(C).
    11. Weihua Chen & Jian Yang & Li Li & Hancheng Wang & Lei Huang & Yucheng Jia & Qiuyun Hu & Xingwen Jiang & Jizhou Tang, 2023. "Investigation of Mechanical Properties Evolution and Crack Initiation Mechanisms of Deep Carbonate Rocks Affected by Acid Erosion," Sustainability, MDPI, vol. 15(15), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8768-:d:865290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.