Study on the whole life cycle integrity of cement interface in heavy oil thermal recovery well under circulating high temperature condition
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.127873
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cong, Ziyuan & Li, Yuwei & Pan, Yishan & Liu, Bo & Shi, Ying & Wei, Jianguang & Li, Wei, 2022. "Study on CO2 foam fracturing model and fracture propagation simulation," Energy, Elsevier, vol. 238(PB).
- Yao Yin & Yiliang Liu, 2015. "FEM Analysis of Fluid-Structure Interaction in Thermal Heavy Oil Recovery Operations," Sustainability, MDPI, vol. 7(4), pages 1-14, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Xishun & Shi, Junfeng & Zhao, Ruidong & Ma, Gaoqiang & Li, Zhongyang & Wang, Xiaofei & Zhang, Jinke, 2024. "Simulation of wellbore pipe flow in oil production engineering: Offshore concentric double-tube CO2-assisted superheated steam wellbore during SAGD process of heavy oil reservoirs," Energy, Elsevier, vol. 294(C).
- Wei, Jianguang & Zhou, Xiaofeng & Shamil, Sultanov & Yuriy, Kotenev & Yang, Erlong & Yang, Ying & Wang, Anlun, 2024. "High-pressure mercury intrusion analysis of pore structure in typical lithofacies shale," Energy, Elsevier, vol. 295(C).
- Heng Yang & Yuhuan Bu & Shaorui Jing & Shenglai Guo & Huajie Liu, 2023. "Failure Mechanism of Integrity of Cement Sheath under the Coupling Effect of Formation Creep and Temperature during the Operation of Salt Rock Gas Storage," Energies, MDPI, vol. 16(20), pages 1-17, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiang, Xingwen & Chen, Mian & Li, Qinghui & Liang, Lihao & Zhong, Zhen & Yu, Bo & Wen, Hang, 2022. "Study on the feasibility of the heat treatment after shale gas reservoir hydration fracturing," Energy, Elsevier, vol. 254(PB).
- Cao, Meng & Sharma, Mukul M., 2023. "Effect of fracture geometry, topology and connectivity on energy recovery from enhanced geothermal systems," Energy, Elsevier, vol. 282(C).
- Wang, Zhoujie & Wang, Peng & Li, Songyan & Cheng, Hao & Zhang, Kaiqiang, 2024. "CO2 foam to enhance geological storage capacity in hydrocarbon reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Fuchun Tian & Yan Jin & Fengming Jin & Xiaonan Ma & Lin Shi & Jun Zhang & Dezhi Qiu & Zhuo Zhang, 2022. "Multi-Fracture Synchronous Propagation Mechanism of Multi-Clustered Fracturing in Interlayered Tight Sandstone Reservoir," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
- Zheng, Peng & Xia, Yucheng & Yao, Tingwei & Jiang, Xu & Xiao, Peiyao & He, Zexuan & Zhou, Desheng, 2022. "Formation mechanisms of hydraulic fracture network based on fracture interaction," Energy, Elsevier, vol. 243(C).
- Zhiyu Li & Zhengdong Lei & Weijun Shen & Dmitriy A. Martyushev & Xinhai Hu, 2023. "A Comprehensive Review of the Oil Flow Mechanism and Numerical Simulations in Shale Oil Reservoirs," Energies, MDPI, vol. 16(8), pages 1-23, April.
- Jesús M. Blanco & Yokasta García Frómeta & Maggi Madrid & Jesús Cuadrado, 2021. "Thermal Performance Assessment of Walls Made of Three Types of Sustainable Concrete Blocks by Means of FEM and Validated through an Extensive Measurement Campaign," Sustainability, MDPI, vol. 13(1), pages 1-18, January.
- Huang, Qiming & li, Mingyang & Yan, Yuting & Ni, Guanhua & Guo, Zhiguo, 2023. "Influence mechanism of inorganic salts on coal permeability during foam fracturing," Energy, Elsevier, vol. 276(C).
- Li, Yuwei & Peng, Genbo & Tang, Jizhou & Zhang, Jun & Zhao, Wanchun & Liu, Bo & Pan, Yishan, 2023. "Thermo-hydro-mechanical coupling simulation for fracture propagation in CO2 fracturing based on phase-field model," Energy, Elsevier, vol. 284(C).
- Weihua Chen & Jian Yang & Li Li & Hancheng Wang & Lei Huang & Yucheng Jia & Qiuyun Hu & Xingwen Jiang & Jizhou Tang, 2023. "Investigation of Mechanical Properties Evolution and Crack Initiation Mechanisms of Deep Carbonate Rocks Affected by Acid Erosion," Sustainability, MDPI, vol. 15(15), pages 1-17, August.
More about this item
Keywords
Thermal production well; Cementing interface; Thermal stress cycle; micro annulus;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223012677. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.