IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p8046-d853526.html
   My bibliography  Save this article

A New Clustering Method to Generate Training Samples for Supervised Monitoring of Long-Term Water Surface Dynamics Using Landsat Data through Google Earth Engine

Author

Listed:
  • Alireza Taheri Dehkordi

    (Department of Photogrammetry and Remote Sensing, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)

  • Mohammad Javad Valadan Zoej

    (Department of Photogrammetry and Remote Sensing, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)

  • Hani Ghasemi

    (Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)

  • Ebrahim Ghaderpour

    (Department of Geomatics Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
    Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo-Moro, 5, 00185 Rome, Italy)

  • Quazi K. Hassan

    (Department of Geomatics Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada)

Abstract

Water resources are vital to the survival of living organisms and contribute substantially to the development of various sectors. Climatic diversity, topographic conditions, and uneven distribution of surface water flows have made reservoirs one of the primary water supply resources in Iran. This study used Landsat 5, 7, and 8 data in Google Earth Engine (GEE) for supervised monitoring of surface water dynamics in the reservoir of eight Iranian dams (Karkheh, Karun-1, Karun-3, Karun-4, Dez, UpperGotvand, Zayanderud, and Golpayegan). A novel automated method was proposed for providing training samples based on an iterative K-means refinement procedure. The proposed method used the Function of the Mask (Fmask) initial water map to generate final training samples. Then, Support Vector Machines (SVM) and Random Forest (RF) models were trained with the generated samples and used for water mapping. Results demonstrated the satisfactory performance of the trained RF model with the samples of the proposed refinement procedure (with overall accuracies of 95.13%) in comparison to the trained RF with direct samples of Fmask initial water map (with overall accuracies of 78.91%), indicating the proposed approach’s success in producing training samples. The performance of three feature sets was also evaluated. Tasseled-Cap (TC) achieved higher overall accuracies than Spectral Indices (SI) and Principal Component Transformation of Image Bands (PCA). However, simultaneous use of all features (TC, SI, and PCA) boosted classification overall accuracy. Moreover, long-term surface water changes showed a downward trend in five study sites. Comparing the latest year’s water surface area (2021) with the maximum long-term extent showed that all study sites experienced a significant reduction (16–62%). Analysis of climate factors’ impacts also revealed that precipitation ( 0.51 ≤ R 2 ≤ 0.79 ) was more correlated than the temperature ( 0.22 ≤ R 2 ≤ 0.39 ) with water surface area changes.

Suggested Citation

  • Alireza Taheri Dehkordi & Mohammad Javad Valadan Zoej & Hani Ghasemi & Ebrahim Ghaderpour & Quazi K. Hassan, 2022. "A New Clustering Method to Generate Training Samples for Supervised Monitoring of Long-Term Water Surface Dynamics Using Landsat Data through Google Earth Engine," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8046-:d:853526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/8046/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/8046/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi Liu & Zhiqiang Jiang & Zhongkai Feng & Yuyun Chen & Hairong Zhang & Ping Chen, 2019. "Optimization of Energy Storage Operation Chart of Cascade Reservoirs with Multi-Year Regulating Reservoir," Energies, MDPI, vol. 12(20), pages 1-20, October.
    2. Julian David Hunt & Giacomo Falchetta & Behnam Zakeri & Andreas Nascimento & Paulo Smith Schneider & Natália Assis Brasil Weber & André Luiz Amarante Mesquita & Paulo Sergio Franco Barbosa & Nivalde J, 2020. "Hydropower impact on the river flow of a humid regional climate," Climatic Change, Springer, vol. 163(1), pages 379-393, November.
    3. Quinn McNemar, 1947. "Note on the sampling error of the difference between correlated proportions or percentages," Psychometrika, Springer;The Psychometric Society, vol. 12(2), pages 153-157, June.
    4. Zhiqiang Jiang & Peibing Song & Xiang Liao, 2020. "Optimization of Year-End Water Level of Multi-Year Regulating Reservoir in Cascade Hydropower System Considering the Inflow Frequency Difference," Energies, MDPI, vol. 13(20), pages 1-20, October.
    5. Iman Khosravi & Yaser Jouybari-Moghaddam & Mohammad Reza Sarajian, 2017. "Erratum to: The comparison of NN, SVR, LSSVR and ANFIS at modeling meteorological and remotely sensed drought indices over the eastern district of Isfahan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1523-1523, July.
    6. Iman Khosravi & Yaser Jouybari-Moghaddam & Mohammad Reza Sarajian, 2017. "The comparison of NN, SVR, LSSVR and ANFIS at modeling meteorological and remotely sensed drought indices over the eastern district of Isfahan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1507-1522, July.
    7. Kotapati Narayana Loukika & Venkata Reddy Keesara & Venkataramana Sridhar, 2021. "Analysis of Land Use and Land Cover Using Machine Learning Algorithms on Google Earth Engine for Munneru River Basin, India," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aoqi Xu & Man-Wen Tian & Behnam Firouzi & Khalid A. Alattas & Ardashir Mohammadzadeh & Ebrahim Ghaderpour, 2022. "A New Deep Learning Restricted Boltzmann Machine for Energy Consumption Forecasting," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
    2. Lirong Yin & Lei Wang & Tingqiao Li & Siyu Lu & Jiawei Tian & Zhengtong Yin & Xiaolu Li & Wenfeng Zheng, 2023. "U-Net-LSTM: Time Series-Enhanced Lake Boundary Prediction Model," Land, MDPI, vol. 12(10), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omidreza Mikaili & Majid Rahimzadegan, 2022. "Investigating remote sensing indices to monitor drought impacts on a local scale (case study: Fars province, Iran)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2511-2529, April.
    2. Sedigheh Mohamadi & Saad Sh. Sammen & Fatemeh Panahi & Mohammad Ehteram & Ozgur Kisi & Amir Mosavi & Ali Najah Ahmed & Ahmed El-Shafie & Nadhir Al-Ansari, 2020. "Zoning map for drought prediction using integrated machine learning models with a nomadic people optimization algorithm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 537-579, October.
    3. Ailing Xu & Li Mo & Qi Wang, 2022. "Research on Operation Mode of the Yalong River Cascade Reservoirs Based on Improved Stochastic Fractal Search Algorithm," Energies, MDPI, vol. 15(20), pages 1-19, October.
    4. Fatemeh Barzegari Banadkooki & Vijay P. Singh & Mohammad Ehteram, 2021. "Multi-timescale drought prediction using new hybrid artificial neural network models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2461-2478, April.
    5. Uttam Bandyopadhyay & Atanu Biswas & Shirsendu Mukherjee, 2009. "Adaptive two-treatment two-period crossover design for binary treatment responses incorporating carry-over effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 13-33, March.
    6. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    7. Bester Tawona Mudereri & Elfatih M. Abdel-Rahman & Shepard Ndlela & Louisa Delfin Mutsa Makumbe & Christabel Chiedza Nyanga & Henri E. Z. Tonnang & Samira A. Mohamed, 2022. "Integrating the Strength of Multi-Date Sentinel-1 and -2 Datasets for Detecting Mango ( Mangifera indica L.) Orchards in a Semi-Arid Environment in Zimbabwe," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    8. Nosi, Costanza & D’Agostino, Antonella & Pratesi, Carlo Alberto & Barbarossa, Camilla, 2021. "Evaluating a social marketing campaign on healthy nutrition and lifestyle among primary-school children: A mixed-method research design," Evaluation and Program Planning, Elsevier, vol. 89(C).
    9. John E. Core, 2010. "Discussion of Chief Executive Officer Equity Incentives and Accounting Irregularities," Journal of Accounting Research, Wiley Blackwell, vol. 48(2), pages 273-287, May.
    10. Preety Srivastava & Xueyan Zhao, 2010. "What Do the Bingers Drink? Micro‐Unit Evidence on Negative Externalities and Drinker Characteristics of Alcohol Consumption by Beverage Types," Economic Papers, The Economic Society of Australia, vol. 29(2), pages 229-250, June.
    11. Hanousek Jan & Kočenda Evžen & Novotný Jan, 2012. "The identification of price jumps," Monte Carlo Methods and Applications, De Gruyter, vol. 18(1), pages 53-77, January.
    12. Monnery, Benjamin & Wolff, François-Charles & Henneguelle, Anaïs, 2020. "Prison, semi-liberty and recidivism: Bounding causal effects in a survival model," International Review of Law and Economics, Elsevier, vol. 61(C).
    13. Holger Schwender & Margaret A. Taub & Terri H. Beaty & Mary L. Marazita & Ingo Ruczinski, 2012. "Rapid Testing of SNPs and Gene–Environment Interactions in Case–Parent Trio Data Based on Exact Analytic Parameter Estimation," Biometrics, The International Biometric Society, vol. 68(3), pages 766-773, September.
    14. Matysková, Ludmila & Rogers, Brian & Steiner, Jakub & Sun, Keh-Kuan, 2020. "Habits as adaptations: An experimental study," Games and Economic Behavior, Elsevier, vol. 122(C), pages 391-406.
    15. André, Kévin, 2013. "Applying the Capability Approach to the French Education System: An Assessment of the "Pourquoi pas moi ?"," ESSEC Working Papers WP1316, ESSEC Research Center, ESSEC Business School.
    16. repec:hal:journl:hal-00880246 is not listed on IDEAS
    17. Ruiz-Frau, A. & Krause, T. & Marbà, N., 2018. "The use of sociocultural valuation in sustainable environmental management," Ecosystem Services, Elsevier, vol. 29(PA), pages 158-167.
    18. repec:cup:judgdm:v:8:y:2013:i:3:p:278-298 is not listed on IDEAS
    19. Shaub, David, 2020. "Fast and accurate yearly time series forecasting with forecast combinations," International Journal of Forecasting, Elsevier, vol. 36(1), pages 116-120.
    20. AlMalki, Hameeda A. & Durugbo, Christopher M., 2023. "Evaluating critical institutional factors of Industry 4.0 for education reform," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    21. Guevara, C. Angelo & Fukushi, Mitsuyoshi, 2016. "Modeling the decoy effect with context-RUM Models: Diagrammatic analysis and empirical evidence from route choice SP and mode choice RP case studies," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 318-337.
    22. Melo, Grace & Palma, Marco A. & Ribera, Luis A., 2024. "Are experts overoptimistic about the success of food market labeling information?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343870, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8046-:d:853526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.