IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7556-d843937.html
   My bibliography  Save this article

A Freight Transportation Network Model with a New Bundling Option

Author

Listed:
  • Young-Soo Myung

    (Department of Business Administration, Dankook University, Yongin 16890, Korea)

  • Yung-Mok Yu

    (Department of Business Administration, Dankook University, Yongin 16890, Korea)

Abstract

A bundling option in a freight transportation network model enables a certain amount of goods to be sent after grouping them into a bundle. Usually, each bundle occupies the space of a unit good and/or can be transshipped using a more economical transportation mode, which results in reduced transportation costs and carbon emissions. As bundling and unbundling also incur costs, it is important to use the bundling option in an economical way. Several freight transportation network models were developed to find an optimal bundling strategy that minimizes the total cost. The existing models assume that bundling and unbundling can be performed at all nodes, including transshipping nodes. However, in many applications, goods are bundled at the supply node and are not unbundled until they arrive at the demand node. A new model, proposed herein, allows bundling only at the supply nodes and unbundling at the demand nodes. We investigated the complexity of the new model and developed a solution method. Furthermore, we analyzed how the total cost is affected by the new assumption.

Suggested Citation

  • Young-Soo Myung & Yung-Mok Yu, 2022. "A Freight Transportation Network Model with a New Bundling Option," Sustainability, MDPI, vol. 14(13), pages 1-13, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7556-:d:843937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7556/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7556/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rob Konings, 2005. "Foldable Containers to Reduce the Costs of Empty Transport? A Cost–Benefit Analysis from a Chain and Multi-Actor Perspective," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 7(3), pages 223-249, September.
    2. Shintani, Koichi & Konings, Rob & Imai, Akio, 2010. "The impact of foldable containers on container fleet management costs in hinterland transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 750-763, September.
    3. Myung, Young-Soo & Yu, Yung-Mok, 2020. "Freight transportation network model with bundling option," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kolar, Petr & Schramm, Hans-Joachim & Prockl, Günter, 2018. "Intermodal transport and repositioning of empty containers in Central and Eastern Europe hinterland," Journal of Transport Geography, Elsevier, vol. 69(C), pages 73-82.
    2. Jeong, Yoonjea & Kim, Gwang, 2023. "Reliable design of container shipping network with foldable container facility disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    3. Zhang, Ruiyou & Zhao, Haishu & Moon, Ilkyeong, 2018. "Range-based truck-state transition modeling method for foldable container drayage services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 225-239.
    4. Shintani, Koichi & Konings, Rob & Imai, Akio, 2019. "Combinable containers: A container innovation to save container fleet and empty container repositioning costs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 248-272.
    5. Myung, Young-Soo & Yu, Yung-Mok, 2020. "Freight transportation network model with bundling option," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    6. Moon, Ilkyeong & Do Ngoc, Anh-Dung & Konings, Rob, 2013. "Foldable and standard containers in empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 107-124.
    7. Zhang, Ruiyou & Huang, Chao & Feng, Xuehao, 2020. "Empty container repositioning with foldable containers in a river transport network considering the limitations of bridge heights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 197-213.
    8. Jahn, Carlos & Schlingmeier, Johannes, 2014. "Cooperation in Empty Container Logistics," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Blecker, Thorsten & Kersten, Wolfgang & Ringle, Christian M. (ed.), Innovative Methods in Logistics and Supply Chain Management: Current Issues and Emerging Practices. Proceedings of the Hamburg International Conferenc, volume 19, pages 499-514, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    9. Koichi Shintani & Rob Konings & Etsuko Nishimura & Akio Imai, 2020. "The impact of foldable containers on the cost of empty container relocation in the hinterland of seaports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(1), pages 68-101, March.
    10. Jeong, Yoonjea & Saha, Subrata & Chatterjee, Debajyoti & Moon, Ilkyeong, 2018. "Direct shipping service routes with an empty container management strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 123-142.
    11. Zirui Liang & Ryuichi Shibasaki & Yuji Hoshino, 2021. "Do Foldable Containers Enhance Efficient Empty Container Repositioning under Demand Fluctuation?—Case of the Pacific Region," Sustainability, MDPI, vol. 13(9), pages 1-24, April.
    12. Zheng, Jianfeng & Sun, Zhuo & Zhang, Fangjun, 2016. "Measuring the perceived container leasing prices in liner shipping network design with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 123-140.
    13. Alaa Abdelshafie & May Salah & Tomaž Kramberger & Dejan Dragan, 2022. "Repositioning and Optimal Re-Allocation of Empty Containers: A Review of Methods, Models, and Applications," Sustainability, MDPI, vol. 14(11), pages 1-23, May.
    14. Chen, Rui & Meng, Qiang & Jia, Peng, 2022. "Container port drayage operations and management: Past and future," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    15. Yu, Mingzhu & Fransoo, Jan C. & Lee, Chung-Yee, 2018. "Detention decisions for empty containers in the hinterland transportation system," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 188-208.
    16. Vitalii Naumov & Olha Shulika & Oleksandra Orda & Hanna Vasiutina & Marek Bauer & Myroslav Oliskevych, 2022. "Shaping the Optimal Technology for Servicing the Long-Distance Deliveries of Packaged Cargo by Road Transport," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    17. Lam, Jasmine Siu Lee & Gu, Yimiao, 2016. "A market-oriented approach for intermodal network optimisation meeting cost, time and environmental requirements," International Journal of Production Economics, Elsevier, vol. 171(P2), pages 266-274.
    18. Fan, Tijun & Pan, Qianlan & Pan, Fei & Zhou, Wei & Chen, Jingyi, 2020. "Intelligent logistics integration of internal and external transportation with separation mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    19. Qu, Xiaobo & Meng, Qiang, 2012. "The economic importance of the Straits of Malacca and Singapore: An extreme-scenario analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 258-265.
    20. Jeong, Yoonjea & Saha, Subrata & Moon, Ilkyeong, 2020. "Optimal devanning time and detention charges for container supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7556-:d:843937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.