IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6660-d827306.html
   My bibliography  Save this article

Study on Soda–Ethanol Delignification of Pine Sawdust for a Biorefinery

Author

Listed:
  • Camila María Imlauer Vedoya

    (IMAM, UNaM, CONICET, FCEQYN, Programa de Celulosa y Papel (PROCYP), Félix de Azara 1552, Posadas 3300, Misiones, Argentina)

  • María Cristina Area

    (IMAM, UNaM, CONICET, FCEQYN, Programa de Celulosa y Papel (PROCYP), Félix de Azara 1552, Posadas 3300, Misiones, Argentina)

  • Natalia Raffaeli

    (IMAM, UNaM, CONICET, FCEQYN, Programa de Celulosa y Papel (PROCYP), Félix de Azara 1552, Posadas 3300, Misiones, Argentina)

  • Fernando Esteban Felissia

    (Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Diagonal 113 N° 469 Esquina 117, La Plata 1900, Buenos Aires, Argentina)

Abstract

The soda–ethanol process was conceived as a sulfur-free pulping process, which may also be an alternative to conventional alkaline pulping, such as kraft or soda–AQ in the biorefinery context. An in-depth study using two experimental designs was conducted to establish the viability of soda–ethanol delignification of pine sawdust. At first, a simple factorial design involving the ethanol–water ratio (ethanol:water) and the alkaline load ( AL , % over dry wood, odw) was applied to define the levels of these variables and their eventual interaction. Then, a 3 2 experimental design was performed to evaluate the ability of the process concerning the pulping of pine sawdust. The tested conditions were carefully selected to screen a broad range of cooking times (60, 100, and 140 min) and alkaline loads (19.0, 23.3, and 27.6 %odw) to obtain pulps with different extents of delignification (residual lignin contents). Finally, the kraft, soda–AQ, and soda–ethanol treatments were compared. Soda–ethanol pulping was shown to be a suitable delignification stage for a biorefinery scheme of Pinus elliottii and Pinus taeda sawdust. It has many advantages over traditional processes regarding its environmental impact, harmless chemicals, and selectivity. The tested conditions were similar to those frequently used in conventional pulping at an industrial scale, suggesting the technical feasibility of the soda–ethanol process for pine sawdust processing.

Suggested Citation

  • Camila María Imlauer Vedoya & María Cristina Area & Natalia Raffaeli & Fernando Esteban Felissia, 2022. "Study on Soda–Ethanol Delignification of Pine Sawdust for a Biorefinery," Sustainability, MDPI, vol. 14(11), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6660-:d:827306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6660/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6660/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. von Schenck, A. & Berglin, N. & Uusitalo, J., 2013. "Ethanol from Nordic wood raw material by simplified alkaline soda cooking pre-treatment," Applied Energy, Elsevier, vol. 102(C), pages 229-240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pettersson, Karin & Wetterlund, Elisabeth & Athanassiadis, Dimitris & Lundmark, Robert & Ehn, Christian & Lundgren, Joakim & Berglin, Niklas, 2015. "Integration of next-generation biofuel production in the Swedish forest industry – A geographically explicit approach," Applied Energy, Elsevier, vol. 154(C), pages 317-332.
    2. Barakat, Abdellatif & Monlau, Florian & Solhy, Abderrahim & Carrere, Hélène, 2015. "Mechanical dissociation and fragmentation of lignocellulosic biomass: Effect of initial moisture, biochemical and structural proprieties on energy requirement," Applied Energy, Elsevier, vol. 142(C), pages 240-246.
    3. Zhu, Ming-Qiang & Wen, Jia-Long & Wang, Zhi-Wen & Su, Yin-Quan & Wei, Qin & Sun, Run-Cang, 2015. "Structural changes in lignin during integrated process of steam explosion followed by alkaline hydrogen peroxide of Eucommia ulmoides Oliver and its effect on enzymatic hydrolysis," Applied Energy, Elsevier, vol. 158(C), pages 233-242.
    4. Li, Bin & Ding, Li & Xu, Huanfei & Mu, Xindong & Wang, Haisong, 2017. "Multivariate data analysis applied in alkali-based pretreatment of corn stover," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 307-318.
    5. Sun, Shao-Long & Wen, Jia-Long & Ma, Ming-Guo & Sun, Run-Cang, 2014. "Enhanced enzymatic digestibility of bamboo by a combined system of multiple steam explosion and alkaline treatments," Applied Energy, Elsevier, vol. 136(C), pages 519-526.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6660-:d:827306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.