IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6472-d823888.html
   My bibliography  Save this article

Improving the Lipid Profile of Black Soldier Fly ( Hermetia illucens ) Larvae for Marine Aquafeeds: Current State of Knowledge

Author

Listed:
  • Daniela P. Rodrigues

    (ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal)

  • Olga M. C. C. Ameixa

    (ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal)

  • José Antonio Vázquez

    (Group of Recycling and Valorisation of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), C/Eduardo Cabello, 6, 36208 Vigo, Galicia, Spain)

  • Ricardo Calado

    (ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal)

Abstract

The replacement of fish meal and fish oil by insect-based ingredients in the formulation of marine aquafeeds can be an important step towards sustainability. To pursue this goal, the modulation of the lipid profile of black soldier fly larvae ( Hermetia illucens ) has received great attention. While its nutritional profile can shift with diet, the ability to modulate its lipidome is yet to be understood. The present work provides an overview of the lipid modulation of H. illucens larvae through its diet, aiming to produce a more suitable ingredient for marine aquafeeds. Marine-based substrates significantly improve the lipid profile of H. illucens larvae, namely its omega-3 fatty acids profile. An improvement of approximately 40% can be achieved using fish discards. Substantial levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two essential fatty acids for marine fish and shrimp species, were recorded in H. illucens larvae fed on fish discards and coffee silverskin with Schyzochytrium sp. Unfortunately, these improvements are still deeply connected to marine-based bioresources, some still being too costly for use at an industrial scale (e.g., microalgae). New approaches using solutions from the biotechnology toolbox will be decisive to make H. illucens larvae a feasible alternative ingredient for marine aquafeeds without having to rely on marine bioresources.

Suggested Citation

  • Daniela P. Rodrigues & Olga M. C. C. Ameixa & José Antonio Vázquez & Ricardo Calado, 2022. "Improving the Lipid Profile of Black Soldier Fly ( Hermetia illucens ) Larvae for Marine Aquafeeds: Current State of Knowledge," Sustainability, MDPI, vol. 14(11), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6472-:d:823888
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6472/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6472/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rosamond L. Naylor & Ronald W. Hardy & Alejandro H. Buschmann & Simon R. Bush & Ling Cao & Dane H. Klinger & David C. Little & Jane Lubchenco & Sandra E. Shumway & Max Troell, 2021. "A 20-year retrospective review of global aquaculture," Nature, Nature, vol. 591(7851), pages 551-563, March.
    2. Zheng, Longyu & Li, Qing & Zhang, Jibin & Yu, Ziniu, 2012. "Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production," Renewable Energy, Elsevier, vol. 41(C), pages 75-79.
    3. Lorenzo A. Cadinu & Paolo Barra & Francesco Torre & Francesco Delogu & Fabio A. Madau, 2020. "Insect Rearing: Potential, Challenges, and Circularity," Sustainability, MDPI, vol. 12(11), pages 1-23, June.
    4. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    5. Feng, Weiliang & Xiong, Huan & Wang, Weiguo & Duan, Xiaoling & Yang, Tong & Wu, Cheng & Yang, Fang & Wang, Teilin & Wang, Cunwen, 2020. "A facile and mild one-pot process for direct extraction of lipids from wet energy insects of black soldier fly larvae," Renewable Energy, Elsevier, vol. 147(P1), pages 584-593.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis T. Karapanagiotidis & Marina C. Neofytou & Adamantia Asimaki & Evanthia Daskalopoulou & Pier Psofakis & Eleni Mente & Christos I. Rumbos & Christos G. Athanassiou, 2023. "Fishmeal Replacement by Full-Fat and Defatted Hermetia illucens Prepupae Meal in the Diet of Gilthead Seabream ( Sparus aurata )," Sustainability, MDPI, vol. 15(1), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Xiaoling & Yan, Su & Tie, Xinlong & Lei, Xidan & Liu, Zhiyi & Ma, Zhichao & Wang, Tielin & Feng, Weiliang, 2024. "Bimetallic Ce-Cr doped metal-organic frameworks as a heterogeneous catalyst for highly efficient biodiesel production from insect lipids," Renewable Energy, Elsevier, vol. 224(C).
    2. Wu, Sheng-qing & Sun, Ting-ting & Cai, Zi-zhe & Shen, Juan & Yang, Wen-zhe & Zhao, Zhi-min & Yang, De-po, 2020. "Biolubricant base stock with improved low temperature performance: Ester complex production using housefly (Musca domestica L.) larval lipid," Renewable Energy, Elsevier, vol. 162(C), pages 1940-1951.
    3. Antonio Franco & Carmen Scieuzo & Rosanna Salvia & Anna Maria Petrone & Elena Tafi & Antonio Moretta & Eric Schmitt & Patrizia Falabella, 2021. "Lipids from Hermetia illucens , an Innovative and Sustainable Source," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    4. İlkay Unay-Gailhard & Mark A. Brennen, 2022. "How digital communications contribute to shaping the career paths of youth: a review study focused on farming as a career option," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(4), pages 1491-1508, December.
    5. Mahin Ghafari & Vali Baigi & Zahra Cheraghi & Amin Doosti-Irani, 2016. "The Prevalence of Asymptomatic Bacteriuria in Iranian Pregnant Women: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-10, June.
    6. Elizabeth T Cafiero-Fonseca & Andrew Stawasz & Sydney T Johnson & Reiko Sato & David E Bloom, 2017. "The full benefits of adult pneumococcal vaccination: A systematic review," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-23, October.
    7. Caroline Jennings Saul & Heiko Gebauer, 2018. "Digital Transformation as an Enabler for Advanced Services in the Sanitation Sector," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    8. Santos Urbina & Sofía Villatoro & Jesús Salinas, 2021. "Self-Regulated Learning and Technology-Enhanced Learning Environments in Higher Education: A Scoping Review," Sustainability, MDPI, vol. 13(13), pages 1-12, June.
    9. Oded Berger-Tal & Alison L Greggor & Biljana Macura & Carrie Ann Adams & Arden Blumenthal & Amos Bouskila & Ulrika Candolin & Carolina Doran & Esteban Fernández-Juricic & Kiyoko M Gotanda & Catherine , 2019. "Systematic reviews and maps as tools for applying behavioral ecology to management and policy," Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(1), pages 1-8.
    10. Nadine Desrochers & Adèle Paul‐Hus & Jen Pecoskie, 2017. "Five decades of gratitude: A meta‐synthesis of acknowledgments research," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(12), pages 2821-2833, December.
    11. Maryono, Maryono & Killoes, Aditya Marendra & Adhikari, Rajendra & Abdul Aziz, Ammar, 2024. "Agriculture development through multi-stakeholder partnerships in developing countries: A systematic literature review," Agricultural Systems, Elsevier, vol. 213(C).
    12. Alene Sze Jing Yong & Yi Heng Lim & Mark Wing Loong Cheong & Ednin Hamzah & Siew Li Teoh, 2022. "Willingness-to-pay for cancer treatment and outcome: a systematic review," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 1037-1057, August.
    13. Xue-Ying Xu & Hong Kong & Rui-Xiang Song & Yu-Han Zhai & Xiao-Fei Wu & Wen-Si Ai & Hong-Bo Liu, 2014. "The Effectiveness of Noninvasive Biomarkers to Predict Hepatitis B-Related Significant Fibrosis and Cirrhosis: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-16, June.
    14. Vicente Miñana-Signes & Manuel Monfort-Pañego & Javier Valiente, 2021. "Teaching Back Health in the School Setting: A Systematic Review of Randomized Controlled Trials," IJERPH, MDPI, vol. 18(3), pages 1-18, January.
    15. Agnieszka A. Tubis & Katarzyna Grzybowska, 2022. "In Search of Industry 4.0 and Logistics 4.0 in Small-Medium Enterprises—A State of the Art Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    16. Obsa Urgessa Ayana & Jima Degaga, 2022. "Effects of rural electrification on household welfare: a meta-regression analysis," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 69(2), pages 209-261, June.
    17. Caloffi, Annalisa & Colovic, Ana & Rizzoli, Valentina & Rossi, Federica, 2023. "Innovation intermediaries' types and functions: A computational analysis of the literature," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    18. García-Poole, Chloe & Byrne, Sonia & Rodrigo, María José, 2019. "How do communities intervene with adolescents at psychosocial risk? A systematic review of positive development programs," Children and Youth Services Review, Elsevier, vol. 99(C), pages 194-209.
    19. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Qing Ye & Bao-Xin Qian & Wei-Li Yin & Feng-Mei Wang & Tao Han, 2016. "Association between the HFE C282Y, H63D Polymorphisms and the Risks of Non-Alcoholic Fatty Liver Disease, Liver Cirrhosis and Hepatocellular Carcinoma: An Updated Systematic Review and Meta-Analysis o," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6472-:d:823888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.