IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p6219-d819771.html
   My bibliography  Save this article

Drought Risk Assessment of Sugarcane-Based Electricity Generation in the Rio dos Patos Basin, Brazil

Author

Listed:
  • Jazmin Campos Zeballos

    (Bonn Alliance for Sustainability Research/Innovation Campus Bonn (ICB), University of Bonn, D-53113 Bonn, Germany
    Institute for Environmental and Human Security (UNU EHS), United Nations University, D-53113 Bonn, Germany)

  • Zita Sebesvari

    (Institute for Environmental and Human Security (UNU EHS), United Nations University, D-53113 Bonn, Germany)

  • Jakob Rhyner

    (Institute for Food and Resource Economics, Faculty of Agriculture, University of Bonn, D-53113 Bonn, Germany)

  • Markus Metz

    (Mundialis GmbH & Co. KG, D-53111 Bonn, Germany)

  • Vinicius Bof Bufon

    (Empresa Brasileira de Pesquisa Agropecuária, Embrapa Cerrados, Planaltina, Brasilia 70770-901, Brazil)

Abstract

Brazil has a large share of hydropower in its electricity matrix. Since hydropower depends on water availability, it is particularly vulnerable to drought events, making the Brazilian electricity matrix vulnerable to climate change. Starting in 2005, Brazil opened the matrix to new renewable sources, including sugarcane-based electricity. Sugarcane is known for its resilience to short dry spells. Over the last decades, its production area moved from the coastal plains of the Atlantic Forest biome to the savannahs of the Cerrado biome, which is characterised by a five- to six month-long dry season. The sugarcane-based electricity system is highly dynamic and complex due to the interlinkages, dependencies, and cascading impacts between its agricultural and industrial subsystems. This paper applies the risk framework proposed by the IPCC to assess climate-change-driven drought risks to sugarcane electricity generation systems to identify their strengths and weaknesses, considering the system dynamics and linkages. Our methodology aims to understand and characterize drought in the agriculture as well as industrial subsystems and offers a specific understanding of the system by using indicators tailored to sugarcane-based electricity generation. Our results underline the relevance of actions at different levels of management. Initiatives, such as regional weather forecasts specifically for agriculture, and measures to increase industrial water-use efficiency were identified to be essential to reduce the drought risk. Actions from farmers and mill owners, supported and guided by the government at different levels, have the potential to increase the resilience of the system. For example, the implementation of small dams was identified by local actors as a promising intervention to adapt to the long dry seasons; however, they need to be implemented based on a proper technical assessment in order to locate these dams in suitable places. Moreover, the results show that creating and maintaining small water reservoirs to enable the adoption of deficit-controlled irrigation technology contribute to reducing the overall drought risk of the sugarcane-based electricity generation system.

Suggested Citation

  • Jazmin Campos Zeballos & Zita Sebesvari & Jakob Rhyner & Markus Metz & Vinicius Bof Bufon, 2022. "Drought Risk Assessment of Sugarcane-Based Electricity Generation in the Rio dos Patos Basin, Brazil," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6219-:d:819771
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/6219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/6219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hunt., Julian David & Stilpen, Daniel & de Freitas, Marcos Aurélio Vasconcelos, 2018. "A review of the causes, impacts and solutions for electricity supply crises in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 208-222.
    2. Fernandes, Gláucia & Lima Gomes, Leonardo & Teixeira Brandão, Luiz Eduardo, 2019. "Mitigating Hydrological Risk with Energy Derivatives," Energy Economics, Elsevier, vol. 81(C), pages 528-535.
    3. Souza, Zilmar José de & Azevedo, Paulo Furquim de, 2006. "Geração de energia elétrica excedente no setor sucroalcooleiro: um estudo a partir das usinas paulistas," Brazilian Journal of Rural Economy and Sociology (Revista de Economia e Sociologia Rural-RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 44(2), pages 1-21, March.
    4. Jurandir Zullo & Vânia Rosa Pereira & Andrea Koga-Vicente, 2018. "Sugar-energy sector vulnerability under CMIP5 projections in the Brazilian central-southern macro-region," Climatic Change, Springer, vol. 149(3), pages 489-502, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luzia, Ruan & Rubio, Lihki & Velasquez, Carlos E., 2023. "Sensitivity analysis for forecasting Brazilian electricity demand using artificial neural networks and hybrid models based on Autoregressive Integrated Moving Average," Energy, Elsevier, vol. 274(C).
    2. Julian David Hunt & Andreas Nascimento & Oldrich Joel Romero Guzman & Gilton Carlos de Andrade Furtado & Carla Schwengber ten Caten & Fernanda Munari Caputo Tomé & Walter Leal Filho & Bojan Đurin & Ma, 2022. "Sedimentary Basin Water and Energy Storage: A Low Environmental Impact Option for the Bananal Basin," Energies, MDPI, vol. 15(12), pages 1-18, June.
    3. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    4. Alcocer, Christian Diego & Torres, Elman Roman Torres, 2024. "Salience bias: A framework about the importance of prices and budget constraints perceptions," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 110(C).
    5. Melo, Leonardo B. & Estanislau, Fidéllis B.G.L.e & Costa, Antonella L. & Fortini, Ângela, 2019. "Impacts of the hydrological potential change on the energy matrix of the Brazilian State of Minas Gerais: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 415-422.
    6. Arévalo, Paul & Cano, Antonio & Jurado, Francisco, 2024. "Large-scale integration of renewable energies by 2050 through demand prediction with ANFIS, Ecuador case study," Energy, Elsevier, vol. 286(C).
    7. Nametala, Ciniro Aparecido Leite & Faria, Wandry Rodrigues & Lage, Guilherme Guimarães & Pereira, Benvindo Rodrigues, 2023. "Analysis of hourly price granularity implementation in the Brazilian deregulated electricity contracting environment," Utilities Policy, Elsevier, vol. 81(C).
    8. Hassan Haes Alhelou & Mohamad Esmail Hamedani-Golshan & Takawira Cuthbert Njenda & Pierluigi Siano, 2019. "A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges," Energies, MDPI, vol. 12(4), pages 1-28, February.
    9. Giovanni Masala & Marco Micocci & Andrea Rizk, 2022. "Hedging Wind Power Risk Exposure through Weather Derivatives," Energies, MDPI, vol. 15(4), pages 1-30, February.
    10. Drielli Peyerl & Mariana Oliveira Barbosa & Mariana Ciotta & Maria Rogieri Pelissari & Evandro Mateus Moretto, 2022. "Linkages between the Promotion of Renewable Energy Policies and Low-Carbon Transition Trends in South America’s Electricity Sector," Energies, MDPI, vol. 15(12), pages 1-18, June.
    11. Kazmi, Hussain & Mehmood, Fahad & Shah, Maryam, 2024. "Quantifying residential energy flexibility potential for demand response programs using observational data from grid outages: Evidence from Pakistan," Energy Policy, Elsevier, vol. 188(C).
    12. Machado, Bruno Goulart F. & Bhagwat, Pradyumna C., 2020. "The impact of the generation mix on the current regulatory framework for hydropower remuneration in Brazil," Energy Policy, Elsevier, vol. 137(C).
    13. Gustavo V. Popin & Arthur K. B. Santos & Thiago de P. Oliveira & Plínio B. Camargo & Carlos E. P. Cerri & Marcos Siqueira-Neto, 2020. "Sugarcane straw management for bioenergy: effects of global warming on greenhouse gas emissions and soil carbon storage," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 559-577, April.
    14. Herwin Saito Schultz & Monica Carvalho, 2022. "Design, Greenhouse Emissions, and Environmental Payback of a Photovoltaic Solar Energy System," Energies, MDPI, vol. 15(16), pages 1-24, August.
    15. Chen, Yong & Gibson, Nathan & Biswas, Arpan & Li, An & Bashiri, Hamid & Sharifi, Erfaneh & Fuentes, Claudio & Hoyle, Christopher & Leon, Arturo S. & Skypeck, Christopher J., 2021. "Valuation of operational flexibility: A case study of Bonneville power administration," Energy Economics, Elsevier, vol. 98(C).
    16. Antonio José Steidle Neto & Daniela de Carvalho Lopes, 2021. "Technical analysis of photovoltaic energy generation for supplying the electricity demand in Brazilian dairy farms," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1355-1370, February.
    17. de Souza, Celso Correia & Leandro, José Paulo & dos Reis Neto, José Francisco & Frainer, Daniel Massen & Castelão, Raul Assef, 2018. "Cogeneration of electricity in sugar-alcohol plant: Perspectives and viability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 832-837.
    18. Brandão, Lucas G.L. & Ehrl, Philipp, 2022. "The impact of transmission auctions on Brazilian electric power companies," Utilities Policy, Elsevier, vol. 78(C).
    19. Hunt, Julian David & Nascimento, Andreas & Caten, Carla Schwengber ten & Tomé, Fernanda Munari Caputo & Schneider, Paulo Smith & Thomazoni, André Luis Ribeiro & Castro, Nivalde José de & Brandão, Robe, 2022. "Energy crisis in Brazil: Impact of hydropower reservoir level on the river flow," Energy, Elsevier, vol. 239(PA).
    20. Sagar Adhikari & Jirakiattikul Sopin & Kua-Anan Techato & Bibek Kumar Mudbhari, 2023. "A Systematic Review on Investment Risks in Hydropower to Developing Sustainable Renewable Energy Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 222-230, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6219-:d:819771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.