IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2021i1p28-d707531.html
   My bibliography  Save this article

Urban Green Infrastructure as a Strategy to Address Urban Energy Efficiency and Sustainability. A Case Study of Milagrosa (Pamplona)

Author

Listed:
  • Itxaro Latasa

    (School of Architecture, University of the Basque Country, Plaza Oñati, 2, 20018 Donostia-San Sebastian, Spain)

  • Angela Laurenz

    (School of Architecture, University of the Basque Country, Plaza Oñati, 2, 20018 Donostia-San Sebastian, Spain)

  • Juan Sádaba

    (School of Architecture, University of the Basque Country, Plaza Oñati, 2, 20018 Donostia-San Sebastian, Spain)

Abstract

Green Infrastructure (GI) has gained importance in recent years as it has been revealed as an essential piece to face the environmental problem generated by the incessant growth of urbanization, loss of biodiversity, and climate change. In this vein, the results of a research aimed at investigating the challenges posed by the implementation of the GI in the usual compact urban spaces in the cities of the Mediterranean area are presented, based on the analysis of indicators on green spaces in the Spanish city of Pamplona. A comparative analysis of the indicators (green spaces and trees) in the city’s neighbourhoods using GIS tools reveals the high intra-urban inequalities as well as the existence of, particularly, underfunded areas. The morphological analysis of one of the underfunded spaces (La Milagrosa neighbourhood) also shows that the narrowness of the road and the shortage of green spaces constitute obstacles that must be addressed from the planning tools of the GI. The results allow us to reflect on the importance of the scale of analysis in the planning processes of the UGI (Urban Green Infrastructure) and on neighbourhood the suitability of Nature-based Solutions (NbS) as an alternative for the design and implementation of the UGI.

Suggested Citation

  • Itxaro Latasa & Angela Laurenz & Juan Sádaba, 2021. "Urban Green Infrastructure as a Strategy to Address Urban Energy Efficiency and Sustainability. A Case Study of Milagrosa (Pamplona)," Sustainability, MDPI, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:28-:d:707531
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/1/28/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/1/28/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yangang Xing & Phil Jones & Iain Donnison, 2017. "Characterisation of Nature-Based Solutions for the Built Environment," Sustainability, MDPI, vol. 9(1), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carley C. Reynolds & Francisco J. Escobedo & Nicola Clerici & Jorge Zea-Camaño, 2017. "Does “Greening” of Neotropical Cities Considerably Mitigate Carbon Dioxide Emissions? The Case of Medellin, Colombia," Sustainability, MDPI, vol. 9(5), pages 1-16, May.
    2. Daniel Mora-Melià & Carlos S. López-Aburto & Pablo Ballesteros-Pérez & Pedro Muñoz-Velasco, 2018. "Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    3. Mudoh Mbah & Anna Franz, 2021. "Revitalization and Branding of Rural Communities in Cameroon Using a Circular Approach for Sustainable Development—A Proposal for the Batibo Municipality," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
    4. Pia Minixhofer & Rosemarie Stangl, 2021. "Green Infrastructures and the Consideration of Their Soil-Related Ecosystem Services in Urban Areas—A Systematic Literature Review," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    5. Marie De Groeve & Eda Kale & Scott Allan Orr & Tim De Kock, 2023. "Preliminary Experimental Laboratory Methods to Analyse the Insulation Capacity of Vertical Greening on Temperature and Relative Humidity," Sustainability, MDPI, vol. 15(15), pages 1-13, July.
    6. Chloé Duffaut & Nathalie Frascaria-Lacoste & Pierre-Antoine Versini, 2022. "Barriers and Levers for the Implantation of Sustainable Nature-Based Solutions in Cities: Insights from France," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    7. Hanson, Helena I. & Wickenberg, Björn & Alkan Olsson, Johanna, 2020. "Working on the boundaries—How do science use and interpret the nature-based solution concept?," Land Use Policy, Elsevier, vol. 90(C).
    8. Marcelo Enrique Conti & Massimo Battaglia & Mario Calabrese & Cristina Simone, 2021. "Fostering Sustainable Cities through Resilience Thinking: The Role of Nature-Based Solutions (NBSs): Lessons Learned from Two Italian Case Studies," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    9. Joanna Wysmułek & Maria Hełdak & Anatolii Kucher, 2020. "The Analysis of Green Areas’ Accessibility in Comparison with Statistical Data in Poland," IJERPH, MDPI, vol. 17(12), pages 1-17, June.
    10. Kambo, Amrita & Drogemuller, Robin & Yarlagadda, Prasad K.D.V., 2019. "Assessing Biophilic Design Elements for ecosystem service attributes – A sub-tropical Australian case," Ecosystem Services, Elsevier, vol. 39(C).
    11. Hai-Ying Liu & Marion Jay & Xianwen Chen, 2021. "The Role of Nature-Based Solutions for Improving Environmental Quality, Health and Well-Being," Sustainability, MDPI, vol. 13(19), pages 1-56, October.
    12. Rita Mendonça & Peter Roebeling & Teresa Fidélis & Miguel Saraiva, 2021. "Policy Instruments to Encourage the Adoption of Nature-Based Solutions in Urban Landscapes," Resources, MDPI, vol. 10(8), pages 1-16, August.
    13. Oquendo-Di Cosola, V. & Olivieri, F. & Ruiz-García, L., 2022. "A systematic review of the impact of green walls on urban comfort: temperature reduction and noise attenuation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    14. Samaneh Sadat Nickayin & Aubrey Jahelka & Shuwen Ye & Francesca Perrone & Luca Salvati, 2023. "Planning for Just Cities with Nature-Based Solutions: Sustainability and Socio-Environmental Inequalities in San José de Chamanga, Ecuador," Land, MDPI, vol. 12(3), pages 1-25, March.
    15. Rúben Mendes & Teresa Fidélis & Peter Roebeling & Filipe Teles, 2020. "The Institutionalization of Nature-Based Solutions—A Discourse Analysis of Emergent Literature," Resources, MDPI, vol. 9(1), pages 1-18, January.
    16. Babí Almenar, Javier & Elliot, Thomas & Rugani, Benedetto & Philippe, Bodénan & Navarrete Gutierrez, Tomas & Sonnemann, Guido & Geneletti, Davide, 2021. "Nexus between nature-based solutions, ecosystem services and urban challenges," Land Use Policy, Elsevier, vol. 100(C).
    17. Ashley, Richard & Gersonius, Berry & Digman, Christopher & Horton, Bruce & Smith, Brian & Shaffer, Paul, 2018. "Including uncertainty in valuing blue and green infrastructure for stormwater management," Ecosystem Services, Elsevier, vol. 33(PB), pages 237-246.
    18. Elias Naber & Rebekka Volk & Kai Mörmann & Denise Boehnke & Thomas Lützkendorf & Frank Schultmann, 2022. "Namares—A Surface Inventory and Intervention Assessment Model for Urban Resource Management," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    19. Lei Li & Ali Cheshmehzangi & Faith Ka Shun Chan & Christopher D. Ives, 2021. "Mapping the Research Landscape of Nature-Based Solutions in Urbanism," Sustainability, MDPI, vol. 13(7), pages 1-41, April.
    20. Barnaś, Krzysztof & Jeleński, Tomasz & Nowak-Ocłoń, Marzena & Racoń-Leja, Kinga & Radziszewska-Zielina, Elżbieta & Szewczyk, Bartłomiej & Śladowski, Grzegorz & Toś, Cezary & Varbanov, Petar Sabev, 2023. "Algorithm for the comprehensive thermal retrofit of housing stock aided by renewable energy supply: A sustainable case for Krakow," Energy, Elsevier, vol. 263(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:28-:d:707531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.