IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4139-d532039.html
   My bibliography  Save this article

Effects of Climatic Conditions, Season and Environmental Factors on CO 2 Concentrations in Naturally Ventilated Primary Schools in Chile

Author

Listed:
  • Muriel Diaz

    (Sustainable Building Design Lab, Department UEE, Faculty of Applied Sciences, Université de Liège, 4000 Liège, Belgium
    Department of Architectural Design and Theory, Faculty of Architecture, Construction and Design, Universidad del Bío-Bío, Concepción 4051381, Chile)

  • Mario Cools

    (Local Environment Management & Analysis (LEMA), Department UEE, Faculty of Applied Sciences, Université de Liège, 4000 Liège, Belgium
    Department of Informatics, KULeuven Campus Brussels, Simulation and Modeling, Warmoesberg 26, 1000 Brussels, Belgium
    Faculty of Business Economics, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium)

  • Maureen Trebilcock

    (Department of Architectural Design and Theory, Faculty of Architecture, Construction and Design, Universidad del Bío-Bío, Concepción 4051381, Chile)

  • Beatriz Piderit-Moreno

    (Department of Architectural Design and Theory, Faculty of Architecture, Construction and Design, Universidad del Bío-Bío, Concepción 4051381, Chile)

  • Shady Attia

    (Sustainable Building Design Lab, Department UEE, Faculty of Applied Sciences, Université de Liège, 4000 Liège, Belgium)

Abstract

Between the ages of 6 and 18, children spend between 30 and 42 h a week at school, mostly indoors, where indoor environmental quality is usually deficient and does not favor learning. The difficulty of delivering indoor air quality (IAQ) in learning facilities is related to high occupancy rates and low interaction levels with windows. In non-industrialized countries, as in the cases presented, most classrooms have no mechanical ventilation, due to energy poverty and lack of normative requirements. This fact heavily impacts the indoor air quality and students’ learning outcomes. The aim of the paper is to identify the factors that determine acceptable CO 2 concentrations. Therefore, it studies air quality in free-running and naturally ventilated primary schools in Chile, aiming to identify the impact of contextual, occupant, and building design factors, using CO 2 concentration as a proxy for IAQ. The monitoring of CO 2 , temperature, and humidity revealed that indoor air CO 2 concentration is above 1400 ppm most of the time, with peaks of 5000 ppm during the day, especially in winter. The statistical analysis indicates that CO 2 is dependent on climate, seasonality, and indoor temperature, while it is independent of outside temperature in heated classrooms. The odds of having acceptable concentrations of CO 2 are bigger when indoor temperatures are high, and there is a need to ventilate for cooling.

Suggested Citation

  • Muriel Diaz & Mario Cools & Maureen Trebilcock & Beatriz Piderit-Moreno & Shady Attia, 2021. "Effects of Climatic Conditions, Season and Environmental Factors on CO 2 Concentrations in Naturally Ventilated Primary Schools in Chile," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4139-:d:532039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4139/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4139/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. María Beatriz Piderit & Franklin Vivanco & Geoffrey van Moeseke & Shady Attia, 2019. "Net Zero Buildings—A Framework for an Integrated Policy in Chile," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    2. Pablo Sarricolea & Mariajosé Herrera-Ossandon & Óliver Meseguer-Ruiz, 2017. "Climatic regionalisation of continental Chile," Journal of Maps, Taylor & Francis Journals, vol. 13(2), pages 66-73, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calvo, Rubén & Álamos, Nicolás & Huneeus, Nicolás & O'Ryan, Raúl, 2022. "Energy poverty effects on policy-based PM2.5 emissions mitigation in southern and central Chile," Energy Policy, Elsevier, vol. 161(C).
    2. Roberto Pizarro & Pablo A. Garcia-Chevesich & John E. McCray & Jonathan O. Sharp & Rodrigo Valdés-Pineda & Claudia Sangüesa & Dayana Jaque-Becerra & Pablo Álvarez & Sebastián Norambuena & Alfredo Ibáñ, 2022. "Climate Change and Overuse: Water Resource Challenges during Economic Growth in Coquimbo, Chile," Sustainability, MDPI, vol. 14(6), pages 1-10, March.
    3. Miguel Chen Austin & Katherine Chung-Camargo & Dafni Mora, 2021. "Review of Zero Energy Building Concept-Definition and Developments in Latin America: A Framework Definition for Application in Panama," Energies, MDPI, vol. 14(18), pages 1-30, September.
    4. World Bank, 2020. "Chile’s Forests," World Bank Publications - Reports 33894, The World Bank Group.
    5. Matías Calderón-Seguel & Manuel Prieto & Oliver Meseguer-Ruiz & Freddy Viñales & Paulina Hidalgo & Elías Esper, 2021. "Mining, Urban Growth, and Agrarian Changes in the Atacama Desert: The Case of the Calama Oasis in Northern Chile," Land, MDPI, vol. 10(11), pages 1-21, November.
    6. Tori, Felipe & Bustamante, Waldo & Vera, Sergio, 2022. "Analysis of Net Zero Energy Buildings public policies at the residential building sector: A comparison between Chile and selected countries," Energy Policy, Elsevier, vol. 161(C).
    7. Manuel Carpio & David Carrasco, 2021. "Impact of Shape Factor on Energy Demand, CO 2 Emissions and Energy Cost of Residential Buildings in Cold Oceanic Climates: Case Study of South Chile," Sustainability, MDPI, vol. 13(17), pages 1-20, August.
    8. Cristian Henríquez & Robert Gilmore Pontius & Paulina Contreras, 2024. "Performance of CA_Markov and DINAMICA EGO models to evaluate urban risk in Antofagasta and Mejillones, Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8411-8435, July.
    9. Ana Zazo-Moratalla & Isidora Troncoso-González & Andrés Moreira-Muñoz, 2019. "Regenerative Food Systems to Restore Urban-Rural Relationships: Insights from the Concepción Metropolitan Area Foodshed (Chile)," Sustainability, MDPI, vol. 11(10), pages 1-22, May.
    10. Manuschevich, Daniela & Sarricolea, Pablo & Galleguillos, Mauricio, 2019. "Integrating socio-ecological dynamics into land use policy outcomes: A spatial scenario approach for native forest conservation in south-central Chile," Land Use Policy, Elsevier, vol. 84(C), pages 31-42.
    11. Viviana Tudela & Pablo Sarricolea & Roberto Serrano-Notivoli & Oliver Meseguer-Ruiz, 2023. "A pilot study for climate risk assessment in agriculture: a climate-based index for cherry trees," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 163-185, January.
    12. Diana Mancilla-Ruiz & Francisco de la Barrera & Sergio González & Ana Huaico, 2021. "The Effects of a Megafire on Ecosystem Services and the Pace of Landscape Recovery," Land, MDPI, vol. 10(12), pages 1-16, December.
    13. Jane Loveday & Gregory M. Morrison & David A. Martin, 2022. "Identifying Knowledge and Process Gaps from a Systematic Literature Review of Net-Zero Definitions," Sustainability, MDPI, vol. 14(5), pages 1-37, March.
    14. Rojas, Redlich García & Alvarado, Natalia & Boland, John & Escobar, Rodrigo & Castillejo-Cuberos, Armando, 2019. "Diffuse fraction estimation using the BRL model and relationship of predictors under Chilean, Costa Rican and Australian climatic conditions," Renewable Energy, Elsevier, vol. 136(C), pages 1091-1106.
    15. Cynthia Souaid & Harry van der Heijden & Marja Elsinga, 2021. "Institutional Barriers to Near Zero-Energy Housing: A Context Specific Approach," Sustainability, MDPI, vol. 13(13), pages 1-21, June.
    16. Chong Zhang & Jinbo Wang & Liao Li & Feifei Wang & Wenjie Gang, 2020. "Utilization of Earth-to-Air Heat Exchanger to Pre-Cool/Heat Ventilation Air and Its Annual Energy Performance Evaluation: A Case Study," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    17. Javier Albornoz-Guerrero & Sonia García & Guillermo García Pérez de Sevilla & Igor Cigarroa & Rafael Zapata-Lamana, 2021. "Characteristics of Multicomponent Interventions to Treat Childhood Overweight and Obesity in Extremely Cold Climates: A Systematic Review of a Randomized Controlled Trial," IJERPH, MDPI, vol. 18(6), pages 1-19, March.
    18. Roberto Pizarro & Francisca Borcoski & Ben Ingram & Ramón Bustamante-Ortega & Claudia Sangüesa & Alfredo Ibáñez & Cristóbal Toledo & Cristian Vidal & Pablo A. Garcia-Chevesich, 2024. "Increases in the Amounts of Agricultural Surfaces and Their Impact on the Sustainability of Groundwater Resources in North-Central Chile," Sustainability, MDPI, vol. 16(17), pages 1-20, September.
    19. Roberto Pizarro & Cristian Vidal-Silva & Dayana Jaque & Alfredo Ibáñez Córdova & Claudia Sangüesa & Cristóbal Toledo & Pablo A. Garcia-Chevesich, 2024. "Open-Source Design of Infiltration Trenches for Sustainable Soil and Water Conservation in Rural Areas of Central Chile," Sustainability, MDPI, vol. 16(13), pages 1-14, July.
    20. Deepak Amaripadath & Mirjana Velickovic & Shady Attia, 2022. "Performance Evaluation of a Nearly Zero-Energy Office Building in Temperate Oceanic Climate Based on Field Measurements," Energies, MDPI, vol. 15(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4139-:d:532039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.