IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2973-d513701.html
   My bibliography  Save this article

Gaussian Kernel Methods for Seismic Fragility and Risk Assessment of Mid-Rise Buildings

Author

Listed:
  • Somayajulu L. N. Dhulipala

    (Facility Risk Group, Idaho National Laboratory, Idaho Falls, ID 83402, USA)

Abstract

Seismic fragility functions can be evaluated using the cloud analysis method with linear regression which makes three fundamental assumptions about the relation between structural response and seismic intensity: log-linear median relationship, constant standard deviation, and Gaussian distributed errors. While cloud analysis with linear regression is a popular method, the degree to which these individual and compounded assumptions affect the fragility and the risk of mid-rise buildings needs to be systematically studied. This paper conducts such a study considering three building archetypes that make up a bulk of the building stock: RC moment frame, steel moment frame, and wood shear wall. Gaussian kernel methods are employed to capture the data-driven variations in the median structural response and standard deviation and the distributions of residuals with the intensity level. With reference to the Gaussian kernels approach, it is found that while the linear regression assumptions may not affect the fragility functions of lower damage states, this conclusion does not hold for the higher damage states (such as the Complete state). In addition, the effects of linear regression assumptions on the seismic risk are evaluated. For predicting the demand hazard, it is found that the linear regression assumptions can impact the computed risk for larger structural response values. However, for predicting the loss hazard with downtime as the decision variable, linear regression can be considered adequate for all practical purposes.

Suggested Citation

  • Somayajulu L. N. Dhulipala, 2021. "Gaussian Kernel Methods for Seismic Fragility and Risk Assessment of Mid-Rise Buildings," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2973-:d:513701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dhulipala, Somayajulu L.N. & Flint, Madeleine M., 2020. "Series of semi-Markov processes to model infrastructure resilience under multihazards," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Racine, Jeffrey S., 2008. "Nonparametric Econometrics: A Primer," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(1), pages 1-88, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Martino & Phu Nguyen-Van, 2014. "Labour market regulation and fiscal parameters: A structural model for European regions," Working Papers of BETA 2014-19, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    2. George Halkos & Roman Matousek & Nickolaos Tzeremes, 2016. "Pre-evaluating technical efficiency gains from possible mergers and acquisitions: evidence from Japanese regional banks," Review of Quantitative Finance and Accounting, Springer, vol. 46(1), pages 47-77, January.
    3. Rik Chakraborti & Gavin Roberts, 2023. "How price-gouging regulation undermined COVID-19 mitigation: county-level evidence of unintended consequences," Public Choice, Springer, vol. 196(1), pages 51-83, July.
    4. Mustafa Koroglu & Yiguo Sun, 2016. "Functional-Coefficient Spatial Durbin Models with Nonparametric Spatial Weights: An Application to Economic Growth," Econometrics, MDPI, vol. 4(1), pages 1-16, February.
    5. Don Harding, 2010. "Applying shape and phase restrictions in generalized dynamic categorical models of the business cycle," NCER Working Paper Series 58, National Centre for Econometric Research.
    6. Čížek, Pavel & Koo, Chao Hui, 2021. "Jump-preserving varying-coefficient models for nonlinear time series," Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
    7. Vijverberg, Wim P. & Hasebe, Takuya, 2015. "GTL Regression: A Linear Model with Skewed and Thick-Tailed Disturbances," IZA Discussion Papers 8898, Institute of Labor Economics (IZA).
    8. Villani, Mattias & Kohn, Robert & Giordani, Paolo, 2009. "Regression density estimation using smooth adaptive Gaussian mixtures," Journal of Econometrics, Elsevier, vol. 153(2), pages 155-173, December.
    9. George Halkos & Nickolaos Tzeremes, 2012. "Measuring German regions’ environmental efficiency: a directional distance function approach," Letters in Spatial and Resource Sciences, Springer, vol. 5(1), pages 7-16, March.
    10. Manuel Hernandez & Maximo Torero, 2014. "Parametric versus nonparametric methods in risk scoring: an application to microcredit," Empirical Economics, Springer, vol. 46(3), pages 1057-1079, May.
    11. Chu, Chi-Yang & Henderson, Daniel J. & Parmeter, Christopher F., 2017. "On discrete Epanechnikov kernel functions," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 79-105.
    12. Daraio, Cinzia & Simar, Leopold & Wilson, Paul, 2015. "Testing the "Separability" Condition in Two-Stage Nonparametric Models of Production," LIDAM Discussion Papers ISBA 2015018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. James Bugden & Robert Waschik & Iain Fraser & Jeffrey S. Racine, 2016. "Parametric and non-parametric analysis of tax changes," Global Business and Economics Review, Inderscience Enterprises Ltd, vol. 18(5), pages 533-549.
    14. Chen, Songnian & Khan, Shakeeb & Tang, Xun, 2016. "Informational content of special regressors in heteroskedastic binary response models," Journal of Econometrics, Elsevier, vol. 193(1), pages 162-182.
    15. Régis Barnichon & Christian Matthes, 2014. "Gaussian Mixture Approximations of Impulse Responses and the Nonlinear Effects of Monetary Shocks," Working Paper 16-8, Federal Reserve Bank of Richmond.
    16. Minviel, Jean Joseph & De Witte, Kristof, 2017. "The influence of public subsidies on farm technical efficiency: A robust conditional nonparametric approach," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1112-1120.
    17. Cheng-Wen LEE & Min-Sun KIM, 2017. "The Factors Affecting Life Expectancy In South Korea," EcoForum, "Stefan cel Mare" University of Suceava, Romania, Faculty of Economics and Public Administration - Economy, Business Administration and Tourism Department., vol. 6(3), pages 1-1, august.
    18. Daraio, Cinzia & Bonaccorsi, Andrea & Simar, Léopold, 2015. "Efficiency and economies of scale and specialization in European universities: A directional distance approach," Journal of Informetrics, Elsevier, vol. 9(3), pages 430-448.
    19. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "Economic growth and environmental efficiency: Evidence from US regions," Economics Letters, Elsevier, vol. 120(1), pages 48-52.
    20. Chuku Chuku & Kenneth Onye & Hycent Ajah, 2017. "Structural and Institutional Determinants of Investment Activity in Africa," Advances in African Economic, Social and Political Development, in: Diery Seck (ed.), Investment and Competitiveness in Africa, pages 25-50, Springer.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2973-:d:513701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.