IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2881-d512358.html
   My bibliography  Save this article

A Sustainable Approach towards the Retrofit of the Public Housing Building Stock: Energy-Architectural Experimental and Numerical Analysis

Author

Listed:
  • Federica Rosso

    (Department of Civil, Construction and Environmental Engineering, Sapienza University of Rome, 00184 Rome, Italy
    Department of Civil and Environmental Engineering, University of Perugia, 06123 Perugia, Italy)

  • Arianna Peduzzi

    (Department of Civil, Construction and Environmental Engineering, Sapienza University of Rome, 00184 Rome, Italy)

  • Lorenzo Diana

    (Department of Civil, Construction and Environmental Engineering, University of Naples Federico II, 80125 Naples, Italy)

  • Stefano Cascone

    (Department of Civil Engineering and Architecture, University of Catania, 95125 Catania, Italy)

  • Carlo Cecere

    (Department of Civil, Construction and Environmental Engineering, Sapienza University of Rome, 00184 Rome, Italy)

Abstract

Nowadays, energy retrofit interventions on the existing building stock are of paramount importance towards energy consumption and emissions reductions in the construction sector. Such interventions are also crucial in the view of increasing cities resilience with respect to the intensification of frequent extreme weather events, such as cold spells and heatwaves. Indeed, a wide portion of our cities is dated and lacking with respect to performances. These are the motivations behind the proposed sustainable approach, which deals with the environmental perspective, but also with social and economic ones, by proposing the retrofit of the Public Residential Building stock (Edilizia Residenziale Pubblica, ERP). The objective is to improve the energy performance of ERP stock by means of construction materials coming from local km0 agricultural waste and by-products. The research was conducted by means of in field and numerical analyses of the energy performances of a relevant case study building. Different layers of bio-based, recycled construction materials for the envelope were tested with respect to their efficacy in improving the energy performance of a case study building. The results demonstrate that the most performing envelope solutions and their combination are able to reduce up to 36% of the yearly energy consumption for heating.

Suggested Citation

  • Federica Rosso & Arianna Peduzzi & Lorenzo Diana & Stefano Cascone & Carlo Cecere, 2021. "A Sustainable Approach towards the Retrofit of the Public Housing Building Stock: Energy-Architectural Experimental and Numerical Analysis," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2881-:d:512358
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ingrao, Carlo & Lo Giudice, Agata & Bacenetti, Jacopo & Tricase, Caterina & Dotelli, Giovanni & Fiala, Marco & Siracusa, Valentina & Mbohwa, Charles, 2015. "Energy and environmental assessment of industrial hemp for building applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 29-42.
    2. Lehmann, B. & Ghazi Wakili, K. & Frank, Th. & Vera Collado, B. & Tanner, Ch., 2013. "Effects of individual climatic parameters on the infrared thermography of buildings," Applied Energy, Elsevier, vol. 110(C), pages 29-43.
    3. Albatici, Rossano & Tonelli, Arnaldo M. & Chiogna, Michela, 2015. "A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance," Applied Energy, Elsevier, vol. 141(C), pages 218-228.
    4. Federica Rosso & Anna Laura Pisello & Veronica Lucia Castaldo & Marco Ferrero & Franco Cotana, 2017. "On Innovative Cool-Colored Materials for Building Envelopes: Balancing the Architectural Appearance and the Thermal-Energy Performance in Historical Districts," Sustainability, MDPI, vol. 9(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Oliveira & Ricardo M.S.F. Almeida & António Figueiredo & Romeu Vicente, 2021. "A Case Study on a Stochastic-Based Optimisation Approach towards the Integration of Photovoltaic Panels in Multi-Residential Social Housing," Energies, MDPI, vol. 14(22), pages 1-16, November.
    2. Giovanna Acampa & Lorenzo Diana & Giorgia Marino & Rossella Marmo, 2021. "Assessing the Transformability of Public Housing through BIM," Sustainability, MDPI, vol. 13(10), pages 1-24, May.
    3. Zhou Li & Jiahui Diao & Shaoming Lu & Cong Tao & Jonathan Krauth, 2022. "Exploring a Sustainable Approach to Vernacular Dwelling Spaces with a Multiple Evidence Base Method: A Case Study of the Bai People’s Courtyard Houses in China," Sustainability, MDPI, vol. 14(7), pages 1-26, March.
    4. Marcelle Engler Bridi & Joao Soliman-Junior & Ariovaldo Denis Granja & Patricia Tzortzopoulos & Vanessa Gomes & Doris Catharine Cornelie Knatz Kowaltowski, 2022. "Living Labs in Social Housing Upgrades: Process, Challenges and Recommendations," Sustainability, MDPI, vol. 14(5), pages 1-18, February.
    5. Lorenzo Diana & Saverio D’Auria & Giovanna Acampa & Giorgia Marino, 2022. "Assessment of Disused Public Buildings: Strategies and Tools for Reuse of Healthcare Structures," Sustainability, MDPI, vol. 14(4), pages 1-25, February.
    6. Stefano Cascone, 2023. "Digital Technologies and Sustainability Assessment: A Critical Review on the Integration Methods between BIM and LEED," Sustainability, MDPI, vol. 15(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. O'Grady, Małgorzata & Lechowska, Agnieszka A. & Harte, Annette M., 2017. "Quantification of heat losses through building envelope thermal bridges influenced by wind velocity using the outdoor infrared thermography technique," Applied Energy, Elsevier, vol. 208(C), pages 1038-1052.
    2. Martin, Miguel & Chong, Adrian & Biljecki, Filip & Miller, Clayton, 2022. "Infrared thermography in the built environment: A multi-scale review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Bienvenido-Huertas, David & Moyano, Juan & Marín, David & Fresco-Contreras, Rafael, 2019. "Review of in situ methods for assessing the thermal transmittance of walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 356-371.
    4. Lucchi, Elena, 2018. "Applications of the infrared thermography in the energy audit of buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3077-3090.
    5. Baldinelli, Giorgio & Bianchi, Francesco & Rotili, Antonella & Costarelli, Danilo & Seracini, Marco & Vinti, Gianluca & Asdrubali, Francesco & Evangelisti, Luca, 2018. "A model for the improvement of thermal bridges quantitative assessment by infrared thermography," Applied Energy, Elsevier, vol. 211(C), pages 854-864.
    6. Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
    7. Rossano Albatici & Alessia Gadotti & Christian Baldessari & Michela Chiogna, 2016. "A Decision Making Tool for a Comprehensive Evaluation of Building Retrofitting Actions at the Regional Scale," Sustainability, MDPI, vol. 8(10), pages 1-17, September.
    8. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    9. Anja Hansen & Jörn Budde & Annette Prochnow, 2016. "Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example," Sustainability, MDPI, vol. 8(7), pages 1-24, June.
    10. Blanca Tejedor & Eva Barreira & Vasco Peixoto de Freitas & Tomasz Kisilewicz & Katarzyna Nowak-Dzieszko & Umberto Berardi, 2020. "Impact of Stationary and Dynamic Conditions on the U-Value Measurements of Heavy-Multi Leaf Walls by Quantitative IRT," Energies, MDPI, vol. 13(24), pages 1-19, December.
    11. Doo Sung Choi & Myeong Jin Ko, 2017. "Comparison of Various Analysis Methods Based on Heat Flowmeters and Infrared Thermography Measurements for the Evaluation of the In Situ Thermal Transmittance of Opaque Exterior Walls," Energies, MDPI, vol. 10(7), pages 1-22, July.
    12. Rasooli, Arash & Itard, Laure, 2019. "In-situ rapid determination of walls’ thermal conductivity, volumetric heat capacity, and thermal resistance, using response factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Gigliola Ausiello & Luca Di Girolamo & Antonio Marano, 2019. "Sustainable Requalification: Hemp, Raw Earth, Sun, and Wind for Energy Strategies in a Case Study in Naples, Italy," Sustainability, MDPI, vol. 11(21), pages 1-13, November.
    14. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    15. Seo-Hoon Kim & Jung-Hun Lee & Jong-Hun Kim & Seung-Hwan Yoo & Hak-Geun Jeong, 2018. "The Feasibility of Improving the Accuracy of In Situ Measurements in the Air-Surface Temperature Ratio Method," Energies, MDPI, vol. 11(7), pages 1-18, July.
    16. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    17. Xu, Bin & Cheng, Yuan-xia & Chen, Xing-ni & Xie, Xing & Ji, Jie & Jiao, Dong-sheng, 2023. "Error correction method for heat flux and a new algorithm employed in inverting wall thermal resistance using an artificial neural network: Based on IN-SITU heat flux measurements," Energy, Elsevier, vol. 282(C).
    18. David Bienvenido-Huertas, 2020. "Assessing the Environmental Impact of Thermal Transmittance Tests Performed in Façades of Existing Buildings: The Case of Spain," Sustainability, MDPI, vol. 12(15), pages 1-18, August.
    19. Albatici, Rossano & Tonelli, Arnaldo M. & Chiogna, Michela, 2015. "A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance," Applied Energy, Elsevier, vol. 141(C), pages 218-228.
    20. Trey Malone & Kevin Gomez, 2019. "Hemp in the United States: A Case Study of Regulatory Path Dependence," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(2), pages 199-214, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2881-:d:512358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.