IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2709-d509445.html
   My bibliography  Save this article

Use of Microsimulation Traffic Models as Means for Ensuring Public Transport Sustainability and Accessibility

Author

Listed:
  • Vladislav Krivda

    (Department of Transport Constructions, Faculty of Civil Engineering, VSB-Technical University of Ostrava, 708 00 Ostrava-Poruba, Czech Republic)

  • Jan Petru

    (Department of Transport Constructions, Faculty of Civil Engineering, VSB-Technical University of Ostrava, 708 00 Ostrava-Poruba, Czech Republic)

  • David Macha

    (Department of Transport Constructions, Faculty of Civil Engineering, VSB-Technical University of Ostrava, 708 00 Ostrava-Poruba, Czech Republic)

  • Jakub Novak

    (Department of Transport Constructions, Faculty of Civil Engineering, VSB-Technical University of Ostrava, 708 00 Ostrava-Poruba, Czech Republic)

Abstract

This article deals with the issue of a partial problem in the sustainability and availability of public transport using the example of a specific transit node. In every public transport network, it is the transit nodes that can be a threat to the entire transport system in case of a bad design. The article presents a microsimulation traffic model of a transit node, which was created in the PTV VISSIM/VISWALK program. This model was tested by various traffic loads (i.e., normal loads, loads taking into account the extension of the tram network and loads at extraordinary sports or cultural events). As part of the evaluation of the monitored node, the movement of passengers on pedestrian areas, escalators and staircases was analysed. The obtained results demonstrate the importance of monitoring, for example, the Level of Service, average travel times and pedestrian speeds and other parameters, to ensure the functionality of this construction. The use of traffic models can be crucial, as they can be an invaluable aid and a suitable tool in finding the optimal transport solution that respects the requirements for sustainable and accessible public transport.

Suggested Citation

  • Vladislav Krivda & Jan Petru & David Macha & Jakub Novak, 2021. "Use of Microsimulation Traffic Models as Means for Ensuring Public Transport Sustainability and Accessibility," Sustainability, MDPI, vol. 13(5), pages 1-38, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2709-:d:509445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2709/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2709/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liam Magee & Andy Scerri & Paul James & James Thom & Lin Padgham & Sarah Hickmott & Hepu Deng & Felicity Cahill, 2013. "Reframing social sustainability reporting: towards an engaged approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(1), pages 225-243, February.
    2. Manxia Liu & Weiliang Zeng & Peng Chen & Xuyi Wu, 2017. "A microscopic simulation model for pedestrian-pedestrian and pedestrian-vehicle interactions at crosswalks," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    3. Marek Drliciak & Jan Celko & Michal Cingel & Dusan Jandacka, 2020. "Traffic Volumes as a Modal Split Parameter," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    4. Gipps, P. G., 1986. "A model for the structure of lane-changing decisions," Transportation Research Part B: Methodological, Elsevier, vol. 20(5), pages 403-414, October.
    5. Schakenbos, Rik & Paix, Lissy La & Nijenstein, Sandra & Geurs, Karst T., 2016. "Valuation of a transfer in a multimodal public transport trip," Transport Policy, Elsevier, vol. 46(C), pages 72-81.
    6. Jiri Horak & Jan Tesla & David Fojtik & Vit Vozenilek, 2019. "Modelling Public Transport Accessibility with Monte Carlo Stochastic Simulations: A Case Study of Ostrava," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    7. Vladislav Krivda & Jan Petru & David Macha & Kristyna Plocova & David Fibich, 2020. "An Analysis of Traffic Conflicts as a Tool for Sustainable Road Transport," Sustainability, MDPI, vol. 12(17), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junzhuo Li & Wenyong Li & Guan Lian, 2022. "Optimal Aggregate Size of Traffic Sequence Data Based on Fuzzy Entropy and Mutual Information," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    2. Xianing Wang & Zhan Zhang & Ying Wang & Jun Yang & Linjun Lu, 2022. "A Study on Safety Evaluation of Pedestrian Flows Based on Partial Impact Dynamics by Real-Time Data in Subway Stations," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    3. Zhiguo Shao & Li Zhang & Chuanfeng Han & Lingpeng Meng, 2022. "Measurement and Prediction of Urban Land Traffic Accessibility and Economic Contact Based on GIS: A Case Study of Land Transportation in Shandong Province, China," IJERPH, MDPI, vol. 19(22), pages 1-15, November.
    4. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.
    5. Mohsen Momenitabar & Jeremy Mattson, 2021. "A Multi-Objective Meta-Heuristic Approach to Improve the Bus Transit Network: A Case Study of Fargo-Moorhead Area," Sustainability, MDPI, vol. 13(19), pages 1-25, September.
    6. Kayvan Aghabayk & Alireza Soltani & Nirajan Shiwakoti, 2022. "Investigating Pedestrians’ Exit Choice with Incident Location Awareness in an Emergency in a Multi-Level Shopping Complex," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    7. Ivana Štimac Grandić & Paulo Šćulac & Davor Grandić & Iva Vodopija, 2024. "The Accessible Design of Pedestrian Bridges," Sustainability, MDPI, vol. 16(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Petru & Vladislav Krivda, 2021. "An Analysis of Turbo Roundabouts from the Perspective of Sustainability of Road Transportation," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
    2. Lois, David & Monzón, Andrés & Hernández, Sara, 2018. "Analysis of satisfaction factors at urban transport interchanges: Measuring travellers’ attitudes to information, security and waiting," Transport Policy, Elsevier, vol. 67(C), pages 49-56.
    3. Minh Sang Pham Do & Ketoma Vix Kemanji & Man Dinh Vinh Nguyen & Tuan Anh Vu & Gerrit Meixner, 2023. "The Action Point Angle of Sight: A Traffic Generation Method for Driving Simulation, as a Small Step to Safe, Sustainable and Smart Cities," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    4. Moses Nyakuwanika & Huibrecht Margaretha van der Poll & John Andrew van der Poll, 2021. "A Conceptual Framework for Greener Goldmining through Environmental Management Accounting Practices (EMAPs): The Case of Zimbabwe," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    5. Vladislav Krivda & Jan Petru & David Macha & Kristyna Plocova & David Fibich, 2020. "An Analysis of Traffic Conflicts as a Tool for Sustainable Road Transport," Sustainability, MDPI, vol. 12(17), pages 1-23, September.
    6. Bonsall, Peter & Liu, Ronghui & Young, William, 2005. "Modelling safety-related driving behaviour--impact of parameter values," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(5), pages 425-444, June.
    7. Seung-Hee Lee & Jane Workman & Kwangho Jung, 2016. "Perception of Time, Creative Attitudes, and Adoption of Innovations: A Cross-Cultural Study from Chinese and US College Students," Sustainability, MDPI, vol. 8(11), pages 1-18, November.
    8. Hiroshi Tatsumi & Masaya Kawano & Tetsunobu Yoshitake & Satoshi Toi & Yoshitaka Kajita, 2004. "Evaluation of City Planning Road Development Measures by Microscopic Traffic Simulation," ERSA conference papers ersa04p221, European Regional Science Association.
    9. Aurélie Mercier & Stéphanie Souche‐Le Corvec & Nicolas Ovtracht, 2021. "Measure of accessibility to postal services in France: A potential spatial accessibility approach applied in an urban region," Papers in Regional Science, Wiley Blackwell, vol. 100(1), pages 227-249, February.
    10. Mingmin Guo & Zheng Wu & Huibing Zhu, 2018. "Empirical study of lane-changing behavior on three Chinese freeways," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-22, January.
    11. Maxwell Umunna Nwachukwu & Clement Obinna & Uloma Jiburum & Donald Chiuba Okeke, 2023. "Analysis of Modal Split of Intra-urban Trips in a Centenary City: A Case Study of Enugu, Nigeria," SAGE Open, , vol. 13(1), pages 21582440231, February.
    12. Peter M. Bednar & Christine Welch, 0. "Socio-Technical Perspectives on Smart Working: Creating Meaningful and Sustainable Systems," Information Systems Frontiers, Springer, vol. 0, pages 1-18.
    13. Mikelis Grivins & Talis Tisenkopfs & Zaklina Stojanovic & Bojan Ristic, 2016. "A Comparative Analysis of the Social Performance of Global and Local Berry Supply Chains," Sustainability, MDPI, vol. 8(6), pages 1-20, June.
    14. Yan Yang & Qiang Zhou, 2023. "Modeling and Simulation of Crude Oil Sea–River Transshipment System in China’s Yangtze River Basin," Energies, MDPI, vol. 16(6), pages 1-16, March.
    15. He, Jia & He, Zhengbing & Fan, Bo & Chen, Yanyan, 2020. "Optimal location of lane-changing warning point in a two-lane road considering different traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    16. Romero, Fernando & Gomez, Juan & Paez, Antonio & Vassallo, José Manuel, 2020. "Toll roads vs. Public transportation: A study on the acceptance of congestion-calming measures in Madrid," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 319-342.
    17. Ziakopoulos, Apostolos & Oikonomou, Maria G. & Vlahogianni, Eleni I. & Yannis, George, 2021. "Quantifying the implementation impacts of a point to point automated urban shuttle service in a large-scale network," Transport Policy, Elsevier, vol. 114(C), pages 233-244.
    18. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    19. Marek Bauer & Piotr Kisielewski, 2021. "The Influence of the Duration of Journey Stages on Transport Mode Choice: A Case Study in the City of Tarnow," Sustainability, MDPI, vol. 13(11), pages 1-15, May.
    20. Batara Surya & Hamsina Hamsina & Ridwan Ridwan & Baharuddin Baharuddin & Firman Menne & Andi Tenri Fitriyah & Emil Salim Rasyidi, 2020. "The Complexity of Space Utilization and Environmental Pollution Control in the Main Corridor of Makassar City, South Sulawesi, Indonesia," Sustainability, MDPI, vol. 12(21), pages 1-41, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2709-:d:509445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.