IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2541-d506481.html
   My bibliography  Save this article

The Use of Ethanol as an Alternative Fuel for Small Turbojet Engines

Author

Listed:
  • Rudolf Andoga

    (Department of Avionics, Faculty of Aeronautics, Technical University of Košice, 040 01 Košice, Slovakia)

  • Ladislav Főző

    (Department of Aviation Engineering, Faculty of Aeronautics, Technical University of Košice, 040 01 Košice, Slovakia)

  • Martin Schrötter

    (Department of Avionics, Faculty of Aeronautics, Technical University of Košice, 040 01 Košice, Slovakia)

  • Stanislav Szabo

    (Department of Air Traffic Management, Faculty of Aeronautics, Technical University of Košice, 040 01 Košice, Slovakia)

Abstract

The use of alternative fuels to traditional kerosene-based ones in turbo-jet engines is currently being widely explored and researched. However, the application of alternative fuels in the area of small turbojet engines with thrust ratings up to 2 kilo-newtons, which are used as auxiliary power units or to propel small aircraft or drones, is not as well researched. This paper explores the use of ethanol as a sustainable fuel and its effects on the operation of a small turbojet engine under laboratory conditions. Several concentrations of ethanol and JET A-1 mixtures are explored to study the effects of this fuel on the basic parameters of a small turbojet engine. The influence of the different concentrations of the mixture on the start-up process, speed of the engine, exhaust gas temperature, and compressor pressure are evaluated. The measurements shown in the article represent a pilot study, the results of which show that ethanol can be reliably used as an alternative fuel only when its concentration in a mixture with traditional fuel is lower than 40%, yielding positive effects on the operating temperatures and small negative effects on the speed or thrust of the engine.

Suggested Citation

  • Rudolf Andoga & Ladislav Főző & Martin Schrötter & Stanislav Szabo, 2021. "The Use of Ethanol as an Alternative Fuel for Small Turbojet Engines," Sustainability, MDPI, vol. 13(5), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2541-:d:506481
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2541/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2541/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Grahn & Julia Hansson, 2015. "Prospects for domestic biofuels for transport in Sweden 2030 based on current production and future plans," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(3), pages 290-306, May.
    2. Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
    3. Mendez, C.J. & Parthasarathy, R.N. & Gollahalli, S.R., 2014. "Performance and emission characteristics of butanol/Jet A blends in a gas turbine engine," Applied Energy, Elsevier, vol. 118(C), pages 135-140.
    4. De Oliveira, Fernando C. & Coelho, Suani T., 2017. "History, evolution, and environmental impact of biodiesel in Brazil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 168-179.
    5. Juan E. Tibaquirá & José I. Huertas & Sebastián Ospina & Luis F. Quirama & José E. Niño, 2018. "The Effect of Using Ethanol-Gasoline Blends on the Mechanical, Energy and Environmental Performance of In-Use Vehicles," Energies, MDPI, vol. 11(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartosz Gawron & Aleksander Górniak & Tomasz Białecki & Anna Janicka & Radosław Włostowski & Adriana Włóka & Justyna Molska & Maciej Zawiślak, 2021. "Impact of a Synthetic Component on the Emission of Volatile Organic Compounds during the Combustion Process in a Miniature Turbine Engine," Energies, MDPI, vol. 14(24), pages 1-9, December.
    2. Małgorzata Pawlak & Michał Kuźniar, 2022. "The Effects of the Use of Algae and Jatropha Biofuels on Aircraft Engine Exhaust Emissions in Cruise Phase," Sustainability, MDPI, vol. 14(11), pages 1-10, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    2. Chong, Cheng Tung & Hochgreb, Simone, 2017. "Flame structure, spectroscopy and emissions quantification of rapeseed biodiesel under model gas turbine conditions," Applied Energy, Elsevier, vol. 185(P2), pages 1383-1392.
    3. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
    4. Jafri, Yawer & Wetterlund, Elisabeth & Mesfun, Sennai & Rådberg, Henrik & Mossberg, Johanna & Hulteberg, Christian & Furusjö, Erik, 2020. "Combining expansion in pulp capacity with production of sustainable biofuels – Techno-economic and greenhouse gas emissions assessment of drop-in fuels from black liquor part-streams," Applied Energy, Elsevier, vol. 279(C).
    5. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    6. Huang, Jiangfeng & Khan, Muhammad Tahir & Perecin, Danilo & Coelho, Suani T. & Zhang, Muqing, 2020. "Sugarcane for bioethanol production: Potential of bagasse in Chinese perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Daraei, Mahsa & Avelin, Anders & Dotzauer, Erik & Thorin, Eva, 2019. "Evaluation of biofuel production integrated with existing CHP plants and the impacts on production planning of the system – A case study," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Abedini, Amirmohammad & Amiri, Hamid & Karimi, Keikhosro, 2020. "Efficient biobutanol production from potato peel wastes by separate and simultaneous inhibitors removal and pretreatment," Renewable Energy, Elsevier, vol. 160(C), pages 269-277.
    9. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    10. Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
    11. Muhammad Usman & Muhammad Ali Ijaz Malik & Tariq Nawaz Chaudhary & Fahid Riaz & Sohaib Raza & Muhammad Abubakar & Farrukh Ahmad Malik & Hafiz Muhammad Ahmad & Yasser Fouad & Muhammad Mujtaba Abbas & M, 2023. "Comparative Assessment of Ethanol and Methanol–Ethanol Blends with Gasoline in SI Engine for Sustainable Development," Sustainability, MDPI, vol. 15(9), pages 1-21, May.
    12. Jhonathan Fernandes Torres Souza & Sergio Almeida Pacca, 2019. "How far can low-carbon energy scenarios reach based on proven technologies?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 687-705, June.
    13. Sallevelt, J.L.H.P. & Gudde, J.E.P. & Pozarlik, A.K. & Brem, G., 2014. "The impact of spray quality on the combustion of a viscous biofuel in a micro gas turbine," Applied Energy, Elsevier, vol. 132(C), pages 575-585.
    14. Zbigniew Stępień & Grażyna Żak & Jarosław Markowski & Michał Wojtasik, 2021. "Investigation into the Impact of the Composition of Ethanol Fuel Deposit Control Additives on Their Effectiveness," Energies, MDPI, vol. 14(3), pages 1-15, January.
    15. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Santibañez-Aguilar, José Ezequiel & Quiroz-Ramírez, Juan José & Sánchez-Ramírez, Eduardo & Segovia-Hernández, Juan Gabriel & Flores-Tlacuahuac, Antonio & Ponce-Ortega, José María, 2022. "Marginalization index as social measure for Acetone-Butanol-Ethanol supply chain planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Jafari, Yadollah & Amiri, Hamid & Karimi, Keikhosro, 2016. "Acetone pretreatment for improvement of acetone, butanol, and ethanol production from sweet sorghum bagasse," Applied Energy, Elsevier, vol. 168(C), pages 216-225.
    18. Lu, Yiji & Roskilly, Anthony Paul & Yu, Xiaoli & Jiang, Long & Chen, Longfei, 2018. "Technical feasibility study of scroll-type rotary gasoline engine: A compact and efficient small-scale Humphrey cycle engine," Applied Energy, Elsevier, vol. 221(C), pages 67-74.
    19. Bartosz Gawron & Tomasz Białecki & Anna Janicka & Tomasz Suchocki, 2020. "Combustion and Emissions Characteristics of the Turbine Engine Fueled with HEFA Blends from Different Feedstocks," Energies, MDPI, vol. 13(5), pages 1-12, March.
    20. Ahmed A. Fattah & Tarek M. Aboul-Fotouh & Khaled A. Fattah & Aya H. Mohammed, 2022. "Utilization of Selected Nanoparticles (Ag 2 O and MnO 2 ) for the Production of High-Quality and Environmental-Friendly Gasoline," Sustainability, MDPI, vol. 14(19), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2541-:d:506481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.