IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p2033-d498918.html
   My bibliography  Save this article

Railway System Design by Adopting the Merry-Go-Round (MGR) Paradigm

Author

Listed:
  • Luca D’Acierno

    (Department of Civil, Architectural and Environmental Engineering, Federico II University of Naples, Via Claudio 21, 80125 Naples, Italy)

  • Marilisa Botte

    (Department of Civil, Architectural and Environmental Engineering, Federico II University of Naples, Via Claudio 21, 80125 Naples, Italy)

Abstract

Public transport systems can be characterised by a schedule-based or a frequency-based framework according to the kind of service to be operated. In the former case, specific departure and arrival times are set for each run and disclosed to the users; in the latter, instead, it is necessary to maintain a certain headway between two successive runs, rather than a specific timetable structure. This paper focuses on modelling frequency-based systems, which can be described by means of the so-called Merry-Go-Round (MGR) paradigm. The paradigm is first discussed and the related analytical formulation is presented; the role of the terminal station layout is then investigated within this framework. Finally, in order to show the effectiveness of the proposed formulation, it was implemented in the case of a real-scale metro line.

Suggested Citation

  • Luca D’Acierno & Marilisa Botte, 2021. "Railway System Design by Adopting the Merry-Go-Round (MGR) Paradigm," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2033-:d:498918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/2033/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/2033/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamdouch, Younes & Szeto, W.Y. & Jiang, Y., 2014. "A new schedule-based transit assignment model with travel strategies and supply uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 35-67.
    2. Hamdouch, Younes & Lawphongpanich, Siriphong, 2008. "Schedule-based transit assignment model with travel strategies and capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 663-684, August.
    3. Canca, David & Zarzo, Alejandro, 2017. "Design of energy-Efficient timetables in two-way railway rapid transit lines," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 142-161.
    4. Sang Nguyen & Stefano Pallottino & Michel Gendreau, 1998. "Implicit Enumeration of Hyperpaths in a Logit Model for Transit Networks," Transportation Science, INFORMS, vol. 32(1), pages 54-64, February.
    5. Hamdouch, Younes & Ho, H.W. & Sumalee, Agachai & Wang, Guodong, 2011. "Schedule-based transit assignment model with vehicle capacity and seat availability," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1805-1830.
    6. Goossens, Jan-Willem & van Hoesel, Stan & Kroon, Leo, 2006. "On solving multi-type railway line planning problems," European Journal of Operational Research, Elsevier, vol. 168(2), pages 403-424, January.
    7. Laporte, Gilbert & Mesa, Juan A. & Perea, Federico, 2010. "A game theoretic framework for the robust railway transit network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 447-459, May.
    8. Agostino Nuzzolo & Francesco Russo & Umberto Crisalli, 2001. "A Doubly Dynamic Schedule-based Assignment Model for Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 268-285, August.
    9. Luca D’Acierno & Marilisa Botte, 2018. "A Passenger-Oriented Optimization Model for Implementing Energy-Saving Strategies in Railway Contexts," Energies, MDPI, vol. 11(11), pages 1-25, October.
    10. Wong, S. C. & Yang, Chao & Lo, Hong K., 2001. "A path-based traffic assignment algorithm based on the TRANSYT traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 35(2), pages 163-181, February.
    11. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    12. Maadi, Saeed & Schmöcker, Jan-Dirk, 2017. "Optimal hyperpaths with non-additive link costs," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 235-248.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Željka Jurković & Marijana Hadzima-Nyarko & Danijela Lovoković, 2021. "Railway Corridors in Croatian Cities as Factors of Sustainable Spatial and Cultural Development," Sustainability, MDPI, vol. 13(12), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khani, Alireza, 2019. "An online shortest path algorithm for reliable routing in schedule-based transit networks considering transfer failure probability," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 549-564.
    2. Cats, Oded & West, Jens & Eliasson, Jonas, 2016. "A dynamic stochastic model for evaluating congestion and crowding effects in transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 43-57.
    3. Liu, Jiangtao & Zhou, Xuesong, 2016. "Capacitated transit service network design with boundedly rational agents," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 225-250.
    4. Hamdouch, Younes & Szeto, W.Y. & Jiang, Y., 2014. "A new schedule-based transit assignment model with travel strategies and supply uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 35-67.
    5. Elnaz Miandoabchi & Reza Farahani & W. Szeto, 2012. "Bi-objective bimodal urban road network design using hybrid metaheuristics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 583-621, December.
    6. Binder, Stefan & Maknoon, Yousef & Bierlaire, Michel, 2017. "Exogenous priority rules for the capacitated passenger assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 19-42.
    7. Canca, David & De-Los-Santos, Alicia & Laporte, Gilbert & Mesa, Juan A., 2019. "Integrated Railway Rapid Transit Network Design and Line Planning problem with maximum profit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 1-30.
    8. Wang, Shuaian & Qu, Xiaobo, 2017. "Station choice for Australian commuter rail lines: Equilibrium and optimal fare design," European Journal of Operational Research, Elsevier, vol. 258(1), pages 144-154.
    9. Elnaz Miandoabchi & Reza Farahani & Wout Dullaert & W. Szeto, 2012. "Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks," Networks and Spatial Economics, Springer, vol. 12(3), pages 441-480, September.
    10. David Canca & Alicia De-Los-Santos & Gilbert Laporte & Juan A. Mesa, 2016. "A general rapid network design, line planning and fleet investment integrated model," Annals of Operations Research, Springer, vol. 246(1), pages 127-144, November.
    11. Du, Muqing & Chen, Anthony, 2022. "Sensitivity analysis for transit equilibrium assignment and applications to uncertainty analysis," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 175-202.
    12. Alireza Khani & Mark Hickman & Hyunsoo Noh, 2015. "Trip-Based Path Algorithms Using the Transit Network Hierarchy," Networks and Spatial Economics, Springer, vol. 15(3), pages 635-653, September.
    13. Canca, David & Andrade-Pineda, José Luis & De los Santos, Alicia & Calle, Marcos, 2018. "The Railway Rapid Transit frequency setting problem with speed-dependent operation costs," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 494-519.
    14. Cortés, Cristián E. & Jara-Moroni, Pedro & Moreno, Eduardo & Pineda, Cristobal, 2013. "Stochastic transit equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 29-44.
    15. Valentina Trozzi & Guido Gentile & Ioannis Kaparias & Michael Bell, 2015. "Effects of Countdown Displays in Public Transport Route Choice Under Severe Overcrowding," Networks and Spatial Economics, Springer, vol. 15(3), pages 823-842, September.
    16. Shang, Pan & Xiong, Yufan & Guo, Jifu & Xian, Kai & Yu, Yun & Xu, Han, 2024. "A modeling framework to integrate frequency - and schedule-based passenger assignment approaches for coordinated path choice and space-time trajectory estimation based on multi-source observations," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    17. Jiang, Y. & Szeto, W.Y., 2016. "Reliability-based stochastic transit assignment: Formulations and capacity paradox," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 181-206.
    18. Chu, James C., 2018. "Mixed-integer programming model and branch-and-price-and-cut algorithm for urban bus network design and timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 188-216.
    19. Yongqiu Zhu & Rob M. P. Goverde, 2019. "Dynamic Passenger Assignment for Major Railway Disruptions Considering Information Interventions," Networks and Spatial Economics, Springer, vol. 19(4), pages 1249-1279, December.
    20. Sun, S. & Szeto, W.Y., 2018. "Logit-based transit assignment: Approach-based formulation and paradox revisit," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 191-215.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2033-:d:498918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.