IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v105y2017icp235-248.html
   My bibliography  Save this article

Optimal hyperpaths with non-additive link costs

Author

Listed:
  • Maadi, Saeed
  • Schmöcker, Jan-Dirk

Abstract

Non-additive fares are common in public transport as well as important for a range of other assignment problems. We discuss the problem of finding optimal hyperpaths under such conditions assuming a cost vector with a limited number of marginal decreasing costs depending on the number of links already traversed. We illustrate that these non-additive costs lead to violation of Bellman's optimality principle which in turn means that standard procedures to obtain optimal destination specific hyperpath trees are not feasible. To overcome the problem we introduce the concepts of a “travel history vector” and critical vs fixed nodes. The former records the expected number of traversed links until a node, and the latter distinguishes nodes for which the fare cost can be determined deterministically. With this we develop a 2-stage solution approach. In the first stage we test whether the optimal hyperpath can be obtained by backward search. If this is not the case, we propose a selective hyperpath generation to a (small) number of critical nodes and combine this with standard hyperpath search. We illustrate our approach by applying it to the Sioux Falls network showing that even for link cost functions (fare stages) with large step changes we are able to obtain all optimal hyperpaths in a reasonable computational time.

Suggested Citation

  • Maadi, Saeed & Schmöcker, Jan-Dirk, 2017. "Optimal hyperpaths with non-additive link costs," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 235-248.
  • Handle: RePEc:eee:transb:v:105:y:2017:i:c:p:235-248
    DOI: 10.1016/j.trb.2017.08.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517307506
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.08.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven A. Gabriel & David Bernstein, 1997. "The Traffic Equilibrium Problem with Nonadditive Path Costs," Transportation Science, INFORMS, vol. 31(4), pages 337-348, November.
    2. Lo, Hong K. & Yip, C. W. & Wan, K. H., 2003. "Modeling transfer and non-linear fare structure in multi-modal network," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 149-170, February.
    3. Nguyen, S. & Pallottino, S., 1988. "Equilibrium traffic assignment for large scale transit networks," European Journal of Operational Research, Elsevier, vol. 37(2), pages 176-186, November.
    4. Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
    5. Bell, Michael G.H. & Trozzi, Valentina & Hosseinloo, Solmaz Haji & Gentile, Guido & Fonzone, Achille, 2012. "Time-dependent Hyperstar algorithm for robust vehicle navigation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 790-800.
    6. Chen, Peng & Nie, Yu (Marco), 2013. "Bicriterion shortest path problem with a general nonadditive cost," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 419-435.
    7. Bell, Michael G.H., 2009. "Hyperstar: A multi-path Astar algorithm for risk averse vehicle navigation," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 97-107, January.
    8. Han, Deren & Lo, Hong K., 2004. "Solving non-additive traffic assignment problems: A descent method for co-coercive variational inequalities," European Journal of Operational Research, Elsevier, vol. 159(3), pages 529-544, December.
    9. Wong, S. C. & Yang, Chao & Lo, Hong K., 2001. "A path-based traffic assignment algorithm based on the TRANSYT traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 35(2), pages 163-181, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saeed Maadi & Jan-Dirk Schmöcker, 2020. "Route choice effects of changes from a zonal to a distance-based fare structure in a regional public transport network," Public Transport, Springer, vol. 12(3), pages 535-555, October.
    2. Jin, Zhihua & Schmöcker, Jan-Dirk & Maadi, Saeed, 2019. "On the interaction between public transport demand, service quality and fare for social welfare optimisation," Research in Transportation Economics, Elsevier, vol. 76(C).
    3. López, David & Lozano, Angélica, 2020. "Shortest hyperpaths in a multimodal hypergraph with real-time information on some transit lines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 541-559.
    4. Luca D’Acierno & Marilisa Botte, 2021. "Railway System Design by Adopting the Merry-Go-Round (MGR) Paradigm," Sustainability, MDPI, vol. 13(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Qianfei & (Will) Chen, Peng & (Marco) Nie, Yu, 2015. "Finding optimal hyperpaths in large transit networks with realistic headway distributions," European Journal of Operational Research, Elsevier, vol. 240(1), pages 98-108.
    2. Ouassim Manout & Patrick Bonnel & François Pacull, 2020. "The impact of centroid connectors on transit assignment outcomes," Public Transport, Springer, vol. 12(3), pages 611-629, October.
    3. Bell, Michael G.H. & Trozzi, Valentina & Hosseinloo, Solmaz Haji & Gentile, Guido & Fonzone, Achille, 2012. "Time-dependent Hyperstar algorithm for robust vehicle navigation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 790-800.
    4. Ren, Hualing & Song, Yingjie & Long, Jiancheng & Si, Bingfeng, 2021. "A new transit assignment model based on line and node strategies," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 121-142.
    5. Szeto, W.Y. & Jiang, Y., 2014. "Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 235-263.
    6. Kenetsu Uchida & Agachai Sumalee & David Watling & Richard Connors, 2007. "A Study on Network Design Problems for Multi-modal Networks by Probit-based Stochastic User Equilibrium," Networks and Spatial Economics, Springer, vol. 7(3), pages 213-240, September.
    7. Saeed Maadi & Jan-Dirk Schmöcker, 2020. "Route choice effects of changes from a zonal to a distance-based fare structure in a regional public transport network," Public Transport, Springer, vol. 12(3), pages 535-555, October.
    8. Jiang, Y. & Szeto, W.Y., 2016. "Reliability-based stochastic transit assignment: Formulations and capacity paradox," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 181-206.
    9. Zhi-Chun Li & William Lam & S. Wong, 2009. "The Optimal Transit Fare Structure under Different Market Regimes with Uncertainty in the Network," Networks and Spatial Economics, Springer, vol. 9(2), pages 191-216, June.
    10. Lo, Hong K. & Yip, C. W. & Wan, K. H., 2003. "Modeling transfer and non-linear fare structure in multi-modal network," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 149-170, February.
    11. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    12. Ding Luo & Oded Cats & Hans Lint, 2020. "Can passenger flow distribution be estimated solely based on network properties in public transport systems?," Transportation, Springer, vol. 47(6), pages 2757-2776, December.
    13. Wu, Di & Yin, Yafeng & Lawphongpanich, Siriphong, 2011. "Pareto-improving congestion pricing on multimodal transportation networks," European Journal of Operational Research, Elsevier, vol. 210(3), pages 660-669, May.
    14. Codina, Esteve & Rosell, Francisca, 2017. "A heuristic method for a congested capacitated transit assignment model with strategies," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 293-320.
    15. Younes Hamdouch & Siriphong Lawphongpanich, 2010. "Congestion Pricing for Schedule-Based Transit Networks," Transportation Science, INFORMS, vol. 44(3), pages 350-366, August.
    16. Miller-Hooks, Elise & Mahmassani, Hani, 2003. "Path comparisons for a priori and time-adaptive decisions in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 146(1), pages 67-82, April.
    17. Hamdouch, Younes & Lawphongpanich, Siriphong, 2008. "Schedule-based transit assignment model with travel strategies and capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 663-684, August.
    18. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    19. Amirali Zarrinmehr & Mahmoud Saffarzadeh & Seyedehsan Seyedabrishami & Yu Marco Nie, 2016. "A path-based greedy algorithm for multi-objective transit routes design with elastic demand," Public Transport, Springer, vol. 8(2), pages 261-293, September.
    20. Roberto Cominetti & José Correa, 2001. "Common-Lines and Passenger Assignment in Congested Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 250-267, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:105:y:2017:i:c:p:235-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.