IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p1859-d495957.html
   My bibliography  Save this article

Interdisciplinary Evaluation of Intersection Performances—A Microsimulation-Based MCDA

Author

Listed:
  • Kadir Diler Alemdar

    (Department of Civil Engineering, Faculty of Engineering and Architecture, Erzurum Technical University, 25100 Erzurum, Turkey)

  • Ahmet Tortum

    (Department of Civil Engineering, Faculty of Engineering, Atatürk University, 25100 Erzurum, Turkey)

  • Ömer Kaya

    (Department of Civil Engineering, Faculty of Engineering and Architecture, Erzurum Technical University, 25100 Erzurum, Turkey)

  • Ahmet Atalay

    (Department of Civil Engineering, Faculty of Engineering, Atatürk University, 25100 Erzurum, Turkey)

Abstract

Intersections are the most important regions in terms of urban traffic management. The intersection areas on the corridor should be analyzed together for consistency in traffic engineering. To do so, three intersections on the Vatan Street corridor in İstanbul, the most crowded city of Turkey, were examined. Various geometric and signal designs were performed for intersections and the most suitable corridor design was analyzed. The corridor designs were modeled with the PTV VISSIM microsimulation software. The most suitable corridor design was evaluated by using the results obtained from the microsimulation via analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) from multi criteria decision analysis (MCDA) methods. The evaluation criteria in the study are vehicle delay, queue length, stopped delay, stops, travel time, vehicle safety, CO emission, fuel consumption, and construction cost. As a result, the current and the most suitable alternative corridors were compared according to the comparison parameters and up to 80% improvements were observed. Thus, some advantages were obtained in terms of energy, environment, time, and cost.

Suggested Citation

  • Kadir Diler Alemdar & Ahmet Tortum & Ömer Kaya & Ahmet Atalay, 2021. "Interdisciplinary Evaluation of Intersection Performances—A Microsimulation-Based MCDA," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1859-:d:495957
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/1859/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/1859/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohd Rapik Saat & Jesus Aguilar Serrano, 2015. "Multicriteria high-speed rail route selection: application to Malaysia's high-speed rail corridor prioritization," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(2), pages 200-213, March.
    2. Unutmaz Durmuşoğlu, Zeynep Didem, 2018. "Assessment of techno-entrepreneurship projects by using Analytical Hierarchy Process (AHP)," Technology in Society, Elsevier, vol. 54(C), pages 41-46.
    3. Fangfang Zheng & Henk van Zuylen & Xiaobo Liu, 2017. "A Methodological Framework of Travel Time Distribution Estimation for Urban Signalized Arterial Roads," Transportation Science, INFORMS, vol. 51(3), pages 893-917, August.
    4. Jasmine Siu Lee Lam & Jing Dai, 2012. "A decision support system for port selection," Transportation Planning and Technology, Taylor & Francis Journals, vol. 35(4), pages 509-524, January.
    5. Stavri Dimitrov & Avishai (Avi) Ceder & Subeh Chowdhury & Mikaël Monot, 2017. "Modeling the interaction between buses, passengers and cars on a bus route using a multi-agent system," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(5), pages 592-610, July.
    6. Daniel (Jian) Sun & Shukai Chen & Chun Zhang & Suwan Shen, 2016. "A bus route evaluation model based on GIS and super-efficient data envelopment analysis," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(4), pages 407-423, June.
    7. Tzay-An Shiau, 2014. "Evaluating transport infrastructure decisions under uncertainty," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(6), pages 525-538, August.
    8. Ho, William, 2008. "Integrated analytic hierarchy process and its applications - A literature review," European Journal of Operational Research, Elsevier, vol. 186(1), pages 211-228, April.
    9. F. Golbabaei & F. Moghadas Nejad & A.R. Noory, 2014. "A microscopic analysis of speed deviation impacts on lane-changing behavior," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(4), pages 391-407, June.
    10. Comert, Gurcan, 2013. "Effect of stop line detection in queue length estimation at traffic signals from probe vehicles data," European Journal of Operational Research, Elsevier, vol. 226(1), pages 67-76.
    11. Mohamad Raduan bin Kabit & Phil Charles & Luis Ferreira & Inhi Kim, 2014. "Modelling major traffic incident impacts and estimation of their associated costs," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(4), pages 373-390, June.
    12. Chou, Ying-Chyi & Hsu, Ying-Ying & Yen, Hsin-Yi, 2008. "Human resources for science and technology: Analyzing competitiveness using the analytic hierarchy process," Technology in Society, Elsevier, vol. 30(2), pages 141-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sherif Shokry & Shinji Tanaka & Amr M. Wahaballa, 2022. "Cost–Benefit Analysis of Unconventional Arterial Intersection Designs: Cairo as a Case Study," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    2. Boriana Vatchova & Yordanka Boneva, 2023. "Design of Fuzzy and Conventional Controllers for Modeling and Simulation of Urban Traffic Light System with Feedback Control," Mathematics, MDPI, vol. 11(2), pages 1-11, January.
    3. Irena Ištoka Otković & Barbara Karleuša & Aleksandra Deluka-Tibljaš & Sanja Šurdonja & Mario Marušić, 2021. "Combining Traffic Microsimulation Modeling and Multi-Criteria Analysis for Sustainable Spatial-Traffic Planning," Land, MDPI, vol. 10(7), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yan-Lai & Tang, Jia-Fu & Chin, Kwai-Sang & Jiang, Yu-Shi & Han, Yi & Pu, Yun, 2011. "Estimating the final priority ratings of engineering characteristics in mature-period product improvement by MDBA and AHP," International Journal of Production Economics, Elsevier, vol. 131(2), pages 575-586, June.
    2. Nermin Kişi, 2019. "A Strategic Approach to Sustainable Tourism Development Using the A’WOT Hybrid Method: A Case Study of Zonguldak, Turkey," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    3. Cheng-Hsien Hsieh, 2014. "Disaster risk assessment of ports based on the perspective of vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 851-864, November.
    4. Chen, Fangxi & Yin, Zhiwei & Ye, Yingwei & Sun, Daniel(Jian), 2020. "Taxi hailing choice behavior and economic benefit analysis of emission reduction based on multi-mode travel big data," Transport Policy, Elsevier, vol. 97(C), pages 73-84.
    5. Thomas L. Saaty, 2013. "The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach," Operations Research, INFORMS, vol. 61(5), pages 1101-1118, October.
    6. Yang, Qiaoli & Shi, Zhongke & Yu, Shaowei & Zhou, Jie, 2018. "Analytical evaluation of the use of left-turn phasing for single left-turn lane only," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 266-303.
    7. Juan Cabello Eras & Dayli Covas Varela & Gilberto Hernández Pérez & Alexis Sagastume Gutiérrez & Dunia García Lorenzo & Carlo Vandecasteele & Luc Hens, 2014. "Comparative study of the urban quality of life in Cuban first-level cities from an objective dimension," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(1), pages 195-215, February.
    8. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    9. Meiran Zhiyenbayev & Nadezhda Kunicina & Madina Mansurova & Antons Patlins & Jelena Caiko & Vladimir Beliaev & Roberts Grants & Martins Bisenieks & Guldana Shyntore, 2024. "Development of Aggregated Sustainability Indicators for Quality of Life Evaluations in Urban Areas of the Republic of Kazakhstan," Sustainability, MDPI, vol. 16(21), pages 1-30, October.
    10. Lee, Hasik & Park, Ho-Chul & Kho, Seung-Young & Kim, Dong-Kyu, 2019. "Assessing transit competitiveness in Seoul considering actual transit travel times based on smart card data," Journal of Transport Geography, Elsevier, vol. 80(C).
    11. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    12. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    13. Wang, Xiaojun & Chan, Hing Kai & Li, Dong, 2015. "A case study of an integrated fuzzy methodology for green product development," European Journal of Operational Research, Elsevier, vol. 241(1), pages 212-223.
    14. M Tavana & M A Sodenkamp, 2010. "A fuzzy multi-criteria decision analysis model for advanced technology assessment at Kennedy Space Center," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(10), pages 1459-1470, October.
    15. Loske, Dominic & Klumpp, Matthias, 2021. "Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics," International Journal of Production Economics, Elsevier, vol. 241(C).
    16. Pedro Jose Gudiel Pineda & Chao-Che Hsu & James J. H. Liou & Huai-Wei Lo, 2018. "A Hybrid Model for Aircraft Type Determination Following Flight Cancellation," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1147-1172, July.
    17. Mohammed Abdul Rahman AlShehri & Shailendra Mishra, 2019. "Feature Based Comparison and Selection of SDN Controller," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1-23, August.
    18. Sepehr Ghazinoory & Mansoureh Abdi & Mandana Azadegan-Mehr, 2010. "Swot Methodology: A State-of-the-Art Review for the Past, A Framework for the Future," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 12(1), pages 24-48, November.
    19. K. Madan Shankar & P. Udhaya Kumar & Devika Kannan, 2016. "Analyzing the Drivers of Advanced Sustainable Manufacturing System Using AHP Approach," Sustainability, MDPI, vol. 8(8), pages 1-10, August.
    20. Paweł Karczmarek & Witold Pedrycz & Adam Kiersztyn, 2021. "Fuzzy Analytic Hierarchy Process in a Graphical Approach," Group Decision and Negotiation, Springer, vol. 30(2), pages 463-481, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1859-:d:495957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.