IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13851-d702849.html
   My bibliography  Save this article

Evaluation of Outlier Filtering Algorithms for Accurate Travel Time Measurement Incorporating Lane-Splitting Situations

Author

Listed:
  • Obada Asqool

    (Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
    Center for Transportation Research, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Suhana Koting

    (Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
    Center for Transportation Research, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Ahmad Saifizul

    (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

Abstract

Malaysia has a high percentage of motorcycles. Due to lane-splitting, travel times of motorcycles are less than passenger cars at congestion. Because of this, collecting travel times using the media access control (MAC) address is not straightforward. Many outlier filtering algorithms for travel time datasets have not been evaluated for their capability to filter lane-splitting observations. This study aims to identify the best travel time filtering algorithms for the data containing lane-splitting observations and how to use the best algorithm. Two stages were adopted to achieve the objective of the study. The first stage validates the performance of the previous algorithms, and the second stage checks the sensitivity of the algorithm parameters for different days. The analysis uses the travel time data for three routes in Kuala Lumpur collected by Wi-Fi detectors in May 2018. The results show that the Jang algorithm has the best performance for two of the three routes, and the TransGuide algorithm is the best algorithm for one route. However, the parameters of Jang and TransGuide algorithms are sensitive for different days, and the parameters require daily calibration to obtain acceptable results. Using proper calibration of the algorithm parameters, the Jang and TransGuide algorithms produced the most accurate filtered travel time datasets compared to other algorithms

Suggested Citation

  • Obada Asqool & Suhana Koting & Ahmad Saifizul, 2021. "Evaluation of Outlier Filtering Algorithms for Accurate Travel Time Measurement Incorporating Lane-Splitting Situations," Sustainability, MDPI, vol. 13(24), pages 1-23, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13851-:d:702849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13851/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dion, Francois & Rakha, Hesham, 2006. "Estimating dynamic roadway travel times using automatic vehicle identification data for low sampling rates," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 745-766, November.
    2. Shokoohyar, Sina & Sobhani, Ahmad & Sobhani, Anae, 2020. "Impacts of trip characteristics and weather condition on ride-sourcing network: Evidence from Uber and Lyft," Research in Transportation Economics, Elsevier, vol. 80(C).
    3. Tu Peng & Xu Yang & Zi Xu & Yu Liang, 2020. "Constructing an Environmental Friendly Low-Carbon-Emission Intelligent Transportation System Based on Big Data and Machine Learning Methods," Sustainability, MDPI, vol. 12(19), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    2. Junyong Jang & Yongbin Cho & Juntae Park, 2024. "Bus Route Sketching: A Multimetric Analysis from the User’s and Operator’s Perspectives," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    3. Gonzalez, Juan Nicolas & Gomez, Juan & Vassallo, Jose Manuel, 2023. "Are low emission zones and on-street parking management effective in reducing parking demand for most polluting vehicles and promoting greener ones?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    4. Sehyun Tak & Soomin Woo & Sungjin Park & Sunghoon Kim, 2021. "The City-Wide Impacts of the Interactions between Shared Autonomous Vehicle-Based Mobility Services and the Public Transportation System," Sustainability, MDPI, vol. 13(12), pages 1-29, June.
    5. Ravula, Prashanth, 2022. "Monetary and hassle savings as strategic variables in the ride-sharing market," Research in Transportation Economics, Elsevier, vol. 94(C).
    6. Wong, Wai & Shen, Shengyin & Zhao, Yan & Liu, Henry X., 2019. "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 169-191.
    7. Soriguera, F. & Rosas, D. & Robusté, F., 2010. "Travel time measurement in closed toll highways," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1242-1267, December.
    8. Moonam, Hasan M. & Qin, Xiao & Zhang, Jun, 2019. "Utilizing data mining techniques to predict expected freeway travel time from experienced travel time," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 154-167.
    9. Yildirimoglu, Mehmet & Geroliminis, Nikolas, 2013. "Experienced travel time prediction for congested freeways," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 45-63.
    10. Shokouhyar, Sajjad & Shokoohyar, Sina & Safari, Sepehr, 2020. "Research on the influence of after-sales service quality factors on customer satisfaction," Journal of Retailing and Consumer Services, Elsevier, vol. 56(C).
    11. Zhao, Li & Ke, Hanchen & Huo, Weiwei, 2023. "A frequency item mining based energy consumption prediction method for electric bus," Energy, Elsevier, vol. 263(PD).
    12. Nuri Cihat Onat & Galal M. Abdella & Murat Kucukvar & Adeeb A. Kutty & Munera Al‐Nuaimi & Gürkan Kumbaroğlu & Melih Bulu, 2021. "How eco‐efficient are electric vehicles across Europe? A regionalized life cycle assessment‐based eco‐efficiency analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(5), pages 941-956, September.
    13. Wang, Huiwen & Yi, Wen & Zhen, Lu, 2024. "Optimal policy for scheduling automated guided vehicles in large-scale intelligent transportation systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    14. Liu, Siyuan & Qu, Qiang, 2016. "Dynamic collective routing using crowdsourcing data," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 450-469.
    15. Li, Wu & Zhao, Shengchuan & Ma, Jingwen & Nielsen, Otto Anker & Jiang, Yu, 2023. "Book-ahead ride-hailing trip and its determinants: Findings from large-scale trip records in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13851-:d:702849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.