IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p2111-d1602663.html
   My bibliography  Save this article

Enhancing Travel Time Prediction for Intelligent Transportation Systems: A High-Resolution Origin–Destination-Based Approach with Multi-Dimensional Features

Author

Listed:
  • Chaoyang Shi

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province, Changsha University of Science & Technology, Changsha 410114, China
    Anhui Province Key Laboratory of Physical Geographic Environment, Chuzhou University, Chuzhou 239000, China
    Anhui Engineering Laboratory of Geo-Information Smart Sensing and Services, Chuzhou 239000, China)

  • Waner Zou

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yafei Wang

    (School of Surveying and Geo-Informatics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Zhewen Zhu

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Tengda Chen

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yunfei Zhang

    (Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province, Changsha University of Science & Technology, Changsha 410114, China)

  • Ni Wang

    (Anhui Province Key Laboratory of Physical Geographic Environment, Chuzhou University, Chuzhou 239000, China
    Anhui Engineering Laboratory of Geo-Information Smart Sensing and Services, Chuzhou 239000, China
    Anhui Center for Collaborative Innovation in Geographical Information Integration and Application, Chuzhou 239000, China)

Abstract

Accurate travel time prediction is essential for improving urban mobility, traffic management, and ride-hailing services. Traditional link- and path-based models face limitations due to data sparsity, segmentation errors, and computational inefficiencies. This study introduces an origin–destination (OD)-based travel time prediction framework leveraging high-resolution ride-hailing trajectory data. Unlike previous works, our approach systematically integrates spatiotemporal, quantified weather metrics and driver behavior clustering to enhance predictive accuracy. The proposed model employs a Back Propagation Neural Network (BPNN), which dynamically adjusts hyperparameters to improve generalization and mitigate overfitting. Empirical validation using ride-hailing data from Xi’an, China, demonstrates superior predictive performance, particularly for medium-range trips, achieving an RMSE of 202.89 s and a MAPE of 16.52%. Comprehensive ablation studies highlight the incremental benefits of incorporating spatiotemporal, weather, and behavioral features, showcasing their contributions to reducing prediction errors. While the model excels in moderate-speed scenarios, it exhibits limitations in short trips and low-speed cases due to data imbalance. Future research will enhance model robustness through data augmentation, real-time traffic integration, and scenario-specific adaptations. This study provides a scalable and adaptable travel time prediction framework, offering valuable insights for urban traffic management, dynamic route optimization, and sustainable mobility solutions within ITS.

Suggested Citation

  • Chaoyang Shi & Waner Zou & Yafei Wang & Zhewen Zhu & Tengda Chen & Yunfei Zhang & Ni Wang, 2025. "Enhancing Travel Time Prediction for Intelligent Transportation Systems: A High-Resolution Origin–Destination-Based Approach with Multi-Dimensional Features," Sustainability, MDPI, vol. 17(5), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2111-:d:1602663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/2111/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/2111/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shukun Lai & Hongke Xu & Yongyu Luo & Fumin Zou & Zerong Hu & Huan Zhong, 2024. "Expressway Vehicle Arrival Time Estimation Algorithm Based on Electronic Toll Collection Data," Sustainability, MDPI, vol. 16(13), pages 1-30, June.
    2. Dion, Francois & Rakha, Hesham, 2006. "Estimating dynamic roadway travel times using automatic vehicle identification data for low sampling rates," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 745-766, November.
    3. Kolidakis, Stylianos & Botzoris, George & Profillidis, Vassilios & Lemonakis, Panagiotis, 2019. "Road traffic forecasting — A hybrid approach combining Artificial Neural Network with Singular Spectrum Analysis," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 159-171.
    4. Lingyu Zheng & Hao Ma & Zhongyu Wang, 2024. "Travel Time Estimation for Urban Arterials Based on the Multi-Source Data," Sustainability, MDPI, vol. 16(17), pages 1-15, September.
    5. Krit Jedwanna & Chuthathip Athan & Saroch Boonsiripant, 2023. "Estimating Toll Road Travel Times Using Segment-Based Data Imputation," Sustainability, MDPI, vol. 15(17), pages 1-22, August.
    6. Zhang, Shen & Tang, Jinjun & Wang, Haixiao & Wang, Yinhai & An, Shi, 2017. "Revealing intra-urban travel patterns and service ranges from taxi trajectories," Journal of Transport Geography, Elsevier, vol. 61(C), pages 72-86.
    7. Felipe Lagos & Sebastián Moreno & Wilfredo F. Yushimito & Tomás Brstilo, 2024. "Urban Origin–Destination Travel Time Estimation Using K-Nearest-Neighbor-Based Methods," Mathematics, MDPI, vol. 12(8), pages 1-18, April.
    8. Zhong, R.X. & Chen, C. & Huang, Y.P. & Sumalee, A. & Lam, W.H.K. & Xu, D.B., 2018. "Robust perimeter control for two urban regions with macroscopic fundamental diagrams: A control-Lyapunov function approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 687-707.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    2. Halkos, George & Managi, Shunsuke, 2023. "New developments in the disciplines of environmental and resource economics," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 513-522.
    3. Helai Huang & Jialing Wu & Fang Liu & Yiwei Wang, 2020. "Measuring Accessibility Based on Improved Impedance and Attractive Functions Using Taxi Trajectory Data," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    4. Junyong Jang & Yongbin Cho & Juntae Park, 2024. "Bus Route Sketching: A Multimetric Analysis from the User’s and Operator’s Perspectives," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    5. Su, Z.C. & Chow, Andy H.F. & Fang, C.L. & Liang, E.M. & Zhong, R.X., 2023. "Hierarchical control for stochastic network traffic with reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 196-216.
    6. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    7. Lu, Qing-Long & Sun, Wenzhe & Dai, Jiannan & Schmöcker, Jan-Dirk & Antoniou, Constantinos, 2024. "Traffic resilience quantification based on macroscopic fundamental diagrams and analysis using topological attributes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    8. Tang, Jinjun & Bi, Wei & Liu, Fang & Zhang, Wenhui, 2021. "Exploring urban travel patterns using density-based clustering with multi-attributes from large-scaled vehicle trajectories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    9. Dong, Shuoxuan & Zhou, Yang & Chen, Tianyi & Li, Shen & Gao, Qiantong & Ran, Bin, 2021. "An integrated Empirical Mode Decomposition and Butterworth filter based vehicle trajectory reconstruction method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    10. Xia, Dawen & Jiang, Shunying & Yang, Nan & Hu, Yang & Li, Yantao & Li, Huaqing & Wang, Lin, 2021. "Discovering spatiotemporal characteristics of passenger travel with mobile trajectory big data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    11. Lei Zhang & Guoxing Zhang & Zhizheng Liang & Ekene Frank Ozioko, 2018. "Multi-features taxi destination prediction with frequency domain processing," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-22, March.
    12. Foissaud, Nicolas & Gioldasis, Christos & Tamura, Shun & Christoforou, Zoi & Farhi, Nadir, 2022. "Free-floating e-scooter usage in urban areas: A spatiotemporal analysis," Journal of Transport Geography, Elsevier, vol. 100(C).
    13. Poulopoulou, Maria & Spyropoulou, Ioanna, 2019. "Active traffic management in urban areas: Is it effective for professional drivers? The case of variable message signs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 412-423.
    14. Li, Ye & Mohajerpoor, Reza & Ramezani, Mohsen, 2021. "Perimeter control with real-time location-varying cordon," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 101-120.
    15. Tang, Jinjun & Liang, Jian & Zhang, Shen & Huang, Helai & Liu, Fang, 2018. "Inferring driving trajectories based on probabilistic model from large scale taxi GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 566-577.
    16. Zheng, Nan & Geroliminis, Nikolas, 2020. "Area-based equitable pricing strategies for multimodal urban networks with heterogeneous users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 357-374.
    17. Wong, Wai & Shen, Shengyin & Zhao, Yan & Liu, Henry X., 2019. "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 169-191.
    18. Soriguera, F. & Rosas, D. & Robusté, F., 2010. "Travel time measurement in closed toll highways," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1242-1267, December.
    19. Moonam, Hasan M. & Qin, Xiao & Zhang, Jun, 2019. "Utilizing data mining techniques to predict expected freeway travel time from experienced travel time," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 154-167.
    20. Obada Asqool & Suhana Koting & Ahmad Saifizul, 2021. "Evaluation of Outlier Filtering Algorithms for Accurate Travel Time Measurement Incorporating Lane-Splitting Situations," Sustainability, MDPI, vol. 13(24), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2111-:d:1602663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.