IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13824-d702328.html
   My bibliography  Save this article

The Effects of Thermal-Spatial Behaviours of Land Covers on Urban Heat Islands in Semi-Arid Climates

Author

Listed:
  • Moein Atri

    (Department of Urban and Regional Planning and Design, Shahid Beheshti University, Tehran 1983969411, Iran)

  • Sahar Nedae-Tousi

    (Department of Urban and Regional Planning and Design, Shahid Beheshti University, Tehran 1983969411, Iran)

  • Sina Shahab

    (School of Geography and Planning, Cardiff University, Cardiff CF24 2FN, UK)

  • Ebrahim Solgi

    (School of Engineering and Built Environment, Griffith University, Brisbane 4222, Australia)

Abstract

In recent decades, unsustainable urban development stemming from uncontrolled changes in land cover and the accumulation of population and activities have given rise to adverse environmental consequences, such as the formation of urban heat islands (UHIs) and changes in urban microclimates. The formation and intensity of UHIs can be influenced not only by the type of land cover, but also by other factors, such as the spatial patterns of thermal clusters (e.g., dimensions, contiguity, and integration). By emphasising the differences between semi-arid and cold-and-humid climates in terms of the thermal-spatial behaviours of various types of land cover in these climates, this paper aims to assess the behavioural patterns of thermal clusters in Tehran, Iran. To this end, the relationship between the land surface temperature (LST) and the types of land cover is first demonstrated using combined multispectral satellite images taken by Operational Land Imager (OLI), Thermal Infrared Sensor (TIRS) of the Landsat8 and MODIS, and Sentinel satellites to determine LST and land cover. The effects of different behavioural patterns of thermal clusters on the formation of daytime urban heat islands are then analysed through spatial cross-correlation analysis. Lastly, the thermal behaviours of each cluster are separately examined to reveal how their spatial patterns, such as contiguity, affect the intensity and formation of UHI, with the assumption that each point in a contiguous surface may exhibit different thermal behaviours, depending on its distance from the edge or centre. The results of this study show that the daytime UHIs do not occur in the central parts of Tehran, and instead they are created in the surrounding layer, which mostly consists of barren cover. This finding contrasts with previous research conducted regarding cities located in cold-and-humid climates. Our research also finds that the more compact the hot and cool clusters are, the more contiguous they become, which leads to an increase in UHIs. The results suggest that for every 100 pix/km 2 increase, the cluster temperature increases by approximately 0.7–1 °C. Additionally, placing cool clusters near or in combination with hot clusters interrupts the effect of the hot clusters, leading to a significant temperature reduction. The paper concludes with recommendations for potential sustainable and context-based solutions to UHI problems in semi-arid climates that relate to the determination of the optimal contiguity distance and land use integration patterns for thermal clusters.

Suggested Citation

  • Moein Atri & Sahar Nedae-Tousi & Sina Shahab & Ebrahim Solgi, 2021. "The Effects of Thermal-Spatial Behaviours of Land Covers on Urban Heat Islands in Semi-Arid Climates," Sustainability, MDPI, vol. 13(24), pages 1-23, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13824-:d:702328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13824/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13824/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    2. Taleb, Dana & Abu-Hijleh, Bassam, 2013. "Urban heat islands: Potential effect of organic and structured urban configurations on temperature variations in Dubai, UAE," Renewable Energy, Elsevier, vol. 50(C), pages 747-762.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu Tian & Yongcai Li & Jun Lu & Jue Wang, 2021. "Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    2. Deng, Ji-Yu & Wong, Nyuk Hien & Zheng, Xin, 2021. "Effects of street geometries on building cooling demand in Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    3. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    4. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    5. Gabriele Battista & Emanuele de Lieto Vollaro & Andrea Vallati & Roberto de Lieto Vollaro, 2023. "Technical–Financial Feasibility Study of a Micro-Cogeneration System in the Buildings in Italy," Energies, MDPI, vol. 16(14), pages 1-15, July.
    6. Sánchez-Guevara Sánchez, Carmen & Sanz Fernández, Ana & Núñez Peiró, Miguel & Gómez Muñoz, Gloria, 2020. "Energy poverty in Madrid: Data exploitation at the city and district level," Energy Policy, Elsevier, vol. 144(C).
    7. Shi, Luyang & Luo, Zhiwen & Matthews, Wendy & Wang, Zixuan & Li, Yuguo & Liu, Jing, 2019. "Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong," Energy, Elsevier, vol. 189(C).
    8. Samuelson, Holly W. & Baniassadi, Amir & Gonzalez, Pablo Izaga, 2020. "Beyond energy savings: Investigating the co-benefits of heat resilient architecture," Energy, Elsevier, vol. 204(C).
    9. Coyne, Bryan & Denny, Eleanor, 2021. "Retrofit effectiveness: Evidence from a nationwide residential energy efficiency programme," Energy Policy, Elsevier, vol. 159(C).
    10. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    11. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    12. Myungjin Kim & Li Wang & Yuyu Zhou, 2021. "Spatially Varying Coefficient Models with Sign Preservation of the Coefficient Functions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 367-386, September.
    13. Pigliautile, I. & Pisello, A.L. & Bou-Zeid, E., 2020. "Humans in the city: Representing outdoor thermal comfort in urban canopy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Gabriele Battista & Emanuele de Lieto Vollaro & Luca Evangelisti & Roberto de Lieto Vollaro, 2022. "Urban Overheating Mitigation Strategies Opportunities: A Case Study of a Square in Rome (Italy)," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    15. Maria Makropoulou, 2017. "Microclimate Improvement of Inner-City Urban Areas in a Mediterranean Coastal City," Sustainability, MDPI, vol. 9(6), pages 1-29, May.
    16. Long Pei & Patrick Schalbart & Bruno Peuportier, 2023. "Quantitative Evaluation of the Effects of Heat Island on Building Energy Simulation: A Case Study in Wuhan, China," Energies, MDPI, vol. 16(7), pages 1-23, March.
    17. Jia, Qi & Zhu, Yian & Zhang, Tiantian & Li, Shuling & Han, Dongliang & Feng, Qi & Tan, Yufei & Li, Baochang, 2024. "Urban microclimate differences in continental zone of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    18. Rakin Abrar & Showmitra Kumar Sarkar & Kashfia Tasnim Nishtha & Swapan Talukdar & Shahfahad & Atiqur Rahman & Abu Reza Md Towfiqul Islam & Amir Mosavi, 2022. "Assessing the Spatial Mapping of Heat Vulnerability under Urban Heat Island (UHI) Effect in the Dhaka Metropolitan Area," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    19. Xie, Xiaoxiong & Sahin, Ozge & Luo, Zhiwen & Yao, Runming, 2020. "Impact of neighbourhood-scale climate characteristics on building heating demand and night ventilation cooling potential," Renewable Energy, Elsevier, vol. 150(C), pages 943-956.
    20. Yuanzheng Li & Wenjing Wang & Yating Wang & Yashu Xin & Tian He & Guosong Zhao, 2020. "A Review of Studies Involving the Effects of Climate Change on the Energy Consumption for Building Heating and Cooling," IJERPH, MDPI, vol. 18(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13824-:d:702328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.