IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i23p13500-d696341.html
   My bibliography  Save this article

Efficiency of Different Moringa oleifera (Lam.) Varieties as Natural Coagulants for Urban Wastewater Treatment

Author

Listed:
  • Nidhal Marzougui

    (LR Valorisation des Eaux Non Conventionnelles (LR 16INRGREF02), Institut National de Recherches en Génie Rural, Eaux et Forets, Université de Cartahge, 17 Rue Hédi Karray, BP No. 10, Ariana 2080, Tunisia)

  • Ferdaous Guasmi

    (Laboratoire d’Aridoculture et Cultures Oasiennes, Institut des Régions Arides, Université de Gabès, Route ElJorf, Medenine 4119, Tunisia)

  • Sondes Dhouioui

    (LR Valorisation des Eaux Non Conventionnelles (LR 16INRGREF02), Institut National de Recherches en Génie Rural, Eaux et Forets, Université de Cartahge, 17 Rue Hédi Karray, BP No. 10, Ariana 2080, Tunisia)

  • Mohamed Bouhlel

    (LR Valorisation des Eaux Non Conventionnelles (LR 16INRGREF02), Institut National de Recherches en Génie Rural, Eaux et Forets, Université de Cartahge, 17 Rue Hédi Karray, BP No. 10, Ariana 2080, Tunisia)

  • Mohamed Hachicha

    (LR Valorisation des Eaux Non Conventionnelles (LR 16INRGREF02), Institut National de Recherches en Génie Rural, Eaux et Forets, Université de Cartahge, 17 Rue Hédi Karray, BP No. 10, Ariana 2080, Tunisia)

  • Ronny Berndtsson

    (Centre for Advanced Middle Eastern Studies & Division of Water Resources Engineering, Lund University, 22100 Lund, Sweden)

  • Noomene Sleimi

    (LR-RME Resources, Materials and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Bizerte 7021, Tunisia)

Abstract

There is a great need to find cheaper but still efficient treatment methods for wastewater. This study aimed to test the purifying performance of three different Moringa oleifera varieties that were cultivated in Tunisia on raw (RUW) and secondary treated urban wastewater (TUW). The seeds of the Mornag, Egyptian, and Indian varieties were powdered, added to the water (at concentrations of 0, 50, 100, and 150 mg·L −1 ), and stirred for 45 min at 120 rpm, and then left to settle for two hours. A physicochemical characterization of the wastewater was carried out before and after treatment. The investigated treatments decontaminated both types of urban wastewater. The best treatments were obtained with the Egyptian variety (at 150 mg·L −1 ), which excelled at the reduction of EC, TSS, BOD 5 , Cl, SO 4 , Ca, Na, Cd, and Fe in RUW and BOD 5 , EC, Na, Mg, Cl, and Cd in TUW. High amounts of TKN was found in both types of Moringa -treated wastewater, meaning that it could be used in agricultural irrigation, leading to less use of chemical nitrogen fertilizers and thus improving sustainability for crops, soils, animals, and humans. The Egyptian Moringa variety constitutes a cost-effective and environmentally friendly adsorbent that can be used as a replacement for more expensive treatment technologies.

Suggested Citation

  • Nidhal Marzougui & Ferdaous Guasmi & Sondes Dhouioui & Mohamed Bouhlel & Mohamed Hachicha & Ronny Berndtsson & Noomene Sleimi, 2021. "Efficiency of Different Moringa oleifera (Lam.) Varieties as Natural Coagulants for Urban Wastewater Treatment," Sustainability, MDPI, vol. 13(23), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13500-:d:696341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/23/13500/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/23/13500/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. United Nations Educational, Scientific and Cultura UNESCO, 2018. "Nature-Based Solutions For Water," Working Papers id:12643, eSocialSciences.
    2. Eman Noori Ali, 2021. "Removal of Heavy Metals from Water and Wastewater Using Moringa oleifera," Chapters, in: Mario Alfonso Murillo-Tovar & Hugo Albeiro Saldarriaga Norena & Agnieszka Saeid (ed.), Trace Metals in the Environment - New Approaches and Recent Advances, IntechOpen.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talukder, Byomkesh & Hipel, Keith W., 2020. "Diagnosis of sustainability of trans-boundary water governance in the Great Lakes basin," World Development, Elsevier, vol. 129(C).
    2. Li, Zhi & Fang, Gonghuan & Chen, Yaning & Duan, Weili & Mukanov, Yerbolat, 2020. "Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming," Agricultural Water Management, Elsevier, vol. 231(C).
    3. Panagopoulos, Argyris, 2020. "A comparative study on minimum and actual energy consumption for the treatment of desalination brine," Energy, Elsevier, vol. 212(C).
    4. Yuan-Chien Lin & En-Dian Kuo & Wan-Ju Chi, 2021. "Analysis of Meteorological Drought Resilience and Risk Assessment of Groundwater Using Signal Analysis Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 179-197, January.
    5. Yuan Zhi & Paul B. Hamilton & Xiufeng Wang & Zundong Zhang & Longyue Liang, 2018. "Game Theory Analysis of the Virtual Water Strategy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4747-4761, November.
    6. World Bank, 2020. "Managing Groundwater for Drought Resilience in South Asia," World Bank Publications - Reports 33332, The World Bank Group.
    7. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    8. Guangming Yang & Guofang Gong & Qingqing Gui, 2022. "Exploring the Spatial Network Structure of Agricultural Water Use Efficiency in China: A Social Network Perspective," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    9. Cécile Hérivaux & Philippe Le Coent, 2021. "Introducing Nature into Cities or Preserving Existing Peri-Urban Ecosystems? Analysis of Preferences in a Rapidly Urbanizing Catchment," Sustainability, MDPI, vol. 13(2), pages 1-34, January.
    10. Paula Beceiro & Ana Galvão & Rita Salgado Brito, 2020. "Resilience Assessment Framework for Nature Based Solutions in Stormwater Management and Control: Application to Cities with Different Resilience Maturity," Sustainability, MDPI, vol. 12(23), pages 1-19, December.
    11. Gerd Lupp & Aude Zingraff-Hamed, 2021. "Nature-Based Solutions—Concept, Evaluation, and Governance," Sustainability, MDPI, vol. 13(6), pages 1-5, March.
    12. Fatemeh Asghari & Farzad Piadeh & Daniel Egyir & Hossein Yousefi & Joseph P. Rizzuto & Luiza C. Campos & Kourosh Behzadian, 2023. "Resilience Assessment in Urban Water Infrastructure: A Critical Review of Approaches, Strategies and Applications," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
    13. Daniel Sklarew & Jennifer Sklarew, 2018. "Integrated Water-Energy Policy for Sustainable Development," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 12(4), pages 10-19.
    14. Brennan, Michael & Rondón-Sulbarán, Janeet, 2019. "Transdisciplinary research: Exploring impact, knowledge and quality in the early stages of a sustainable development project," World Development, Elsevier, vol. 122(C), pages 481-491.
    15. Belén López-Felices & José A. Aznar-Sánchez & Juan F. Velasco-Muñoz & María Piquer-Rodríguez, 2020. "Contribution of Irrigation Ponds to the Sustainability of Agriculture. A Review of Worldwide Research," Sustainability, MDPI, vol. 12(13), pages 1-18, July.
    16. Mengmeng Cui & Filipa Ferreira & Tze Kwan Fung & José Saldanha Matos, 2021. "Tale of Two Cities: How Nature-Based Solutions Help Create Adaptive and Resilient Urban Water Management Practices in Singapore and Lisbon," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    17. Golub, Alla & Haqiqi, Iman & Karami, Omid & Sajedinia, Ehsanreza & Taheripour, Farzad, 2022. "Transboundary water challenges and potential collaboration in the Tigris-Euphrates river basin water management," Conference papers 333500, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. R. R. Weerasooriya & L. P. K. Liyanage & R. H. K. Rathnappriya & W. B. M. A. C. Bandara & T. A. N. T. Perera & M. H. J. P. Gunarathna & G. Y. Jayasinghe, 2021. "Industrial water conservation by water footprint and sustainable development goals: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12661-12709, September.
    19. Usman, Haamid Sani & Touati, Khaled & Rahaman, Md. Saifur, 2021. "An economic evaluation of renewable energy-powered membrane distillation for desalination of brackish water," Renewable Energy, Elsevier, vol. 169(C), pages 1294-1304.
    20. Ifigenia Kagalou & Dionissis Latinopoulos, 2020. "Filling the Gap between Ecosystem Services Concept and River Basin Management Plans: The Case of Greece in WFD 20+," Sustainability, MDPI, vol. 12(18), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13500-:d:696341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.