IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11151-d1196092.html
   My bibliography  Save this article

Resilience Assessment in Urban Water Infrastructure: A Critical Review of Approaches, Strategies and Applications

Author

Listed:
  • Fatemeh Asghari

    (Faculty of New Sciences and Technologies, University of Tehran, Tehran 67187-73654, Iran)

  • Farzad Piadeh

    (School of Computing and Engineering, University of West London, London W5 5RF, UK)

  • Daniel Egyir

    (School of Computing and Engineering, University of West London, London W5 5RF, UK)

  • Hossein Yousefi

    (Faculty of New Sciences and Technologies, University of Tehran, Tehran 67187-73654, Iran)

  • Joseph P. Rizzuto

    (School of Computing and Engineering, University of West London, London W5 5RF, UK)

  • Luiza C. Campos

    (Department of Civil, Environmental and Geomatic Engineering, University College London, Gower St., London WC1E 6BT, UK)

  • Kourosh Behzadian

    (School of Computing and Engineering, University of West London, London W5 5RF, UK
    Department of Civil, Environmental and Geomatic Engineering, University College London, Gower St., London WC1E 6BT, UK)

Abstract

Urban water infrastructure (UWI) comprises the main systems, including water supply systems (WSS), urban drainage/stormwater systems (UDS) and wastewater systems (WWS). The UWI needs to be resilient to a wide range of shocks and stresses, including structural failures such as pipe breakage and pump breakdown and functional failures such as unmet water demand/quality, flooding and combined sewer overflows. However, there is no general consensus about the resilience assessment of these systems widely presented by various research works. This study aims to critically review the approaches, strategies and applications of the resilience assessment for the complex systems in UWI. This review includes examining bibliometric analysis, developed frameworks related to resilience assessment to help comprehend resilience concepts for the specified UWI systems in urban settings, strategies for improving resilience, resilience indicators and common tools used for modelling resilience assessment in UWI. The results indicate that resilience assessment has primarily been conducted in developed countries, underscoring the macroeconomic significance of UWI. Three key areas have been identified for analysing resilience in UWI: system design, development of resilience concepts and implementation of green infrastructure. Moreover, it has been discovered that although resilience is commonly defined using technical approaches, a more comprehensive understanding of resilience can be gained through a holistic approach. Furthermore, while strategies such as system upgrades, decentralisation, digitalisation and nature-based solutions can enhance UWI resilience, they may be insufficient to fulfil all resilience indicators. To address the challenge of effectively comparing different resilience options, it is crucial to extensively examine comprehensive and sustainability-based indicators in future research.

Suggested Citation

  • Fatemeh Asghari & Farzad Piadeh & Daniel Egyir & Hossein Yousefi & Joseph P. Rizzuto & Luiza C. Campos & Kourosh Behzadian, 2023. "Resilience Assessment in Urban Water Infrastructure: A Critical Review of Approaches, Strategies and Applications," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11151-:d:1196092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11151/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11151/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. United Nations Educational, Scientific and Cultura UNESCO, 2018. "Nature-Based Solutions For Water," Working Papers id:12643, eSocialSciences.
    2. Paula Beceiro & Rita Salgado Brito & Ana Galvão, 2020. "The Contribution of NBS to Urban Resilience in Stormwater Management and Control: A Framework with Stakeholder Validation," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    3. Apurva Pamidimukkala & Sharareh Kermanshachi & Nikhitha Adepu & Elnaz Safapour, 2021. "Resilience in Water Infrastructures: A Review of Challenges and Adoption Strategies," Sustainability, MDPI, vol. 13(23), pages 1-15, November.
    4. Paul F. Boulos, 2017. "Smart Water Network Modeling for Sustainable and Resilient Infrastructure," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3177-3188, August.
    5. Xun Zeng & Yuanchun Yu & San Yang & Yang Lv & Md Nazirul Islam Sarker, 2022. "Urban Resilience for Urban Sustainability: Concepts, Dimensions, and Perspectives," Sustainability, MDPI, vol. 14(5), pages 1-27, February.
    6. Nariman Valizadeh & Asaad Y. Shamseldin & Liam Wotherspoon, 2019. "Quantification of the hydraulic dimension of stormwater management system resilience to flooding," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4417-4429, October.
    7. Kerri McClymont & David Morrison & Lindsay Beevers & Esther Carmen, 2020. "Flood resilience: a systematic review," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 63(7), pages 1151-1176, June.
    8. Nancey Green Leigh & Heonyeong Lee, 2019. "Sustainable and Resilient Urban Water Systems: The Role of Decentralization and Planning," Sustainability, MDPI, vol. 11(3), pages 1-17, February.
    9. Maria Adriana Cardoso & Rita Salgado Brito & Cristina Pereira & Andoni Gonzalez & John Stevens & Maria João Telhado, 2020. "RAF Resilience Assessment Framework—A Tool to Support Cities’ Action Planning," Sustainability, MDPI, vol. 12(6), pages 1-64, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuyang Mao & Yu Li & Xinlu Bai & Xiaolu Yang & Youting Han & Xin Fu, 2024. "Scenario-Based Green Infrastructure Installations for Building Urban Stormwater Resilience—A Case Study of Fengxi New City, China," Sustainability, MDPI, vol. 16(10), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paula Beceiro & Ana Galvão & Rita Salgado Brito, 2020. "Resilience Assessment Framework for Nature Based Solutions in Stormwater Management and Control: Application to Cities with Different Resilience Maturity," Sustainability, MDPI, vol. 12(23), pages 1-19, December.
    2. Rahimi-Golkhandan, Armin & Aslani, Babak & Mohebbi, Shima, 2022. "Predictive resilience of interdependent water and transportation infrastructures: A sociotechnical approach," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    3. João Barreiro & Filipa Ferreira & Rita Salgado Brito & José Saldanha Matos, 2024. "Development of Resilience Framework and Respective Tool for Urban Stormwater Services," Sustainability, MDPI, vol. 16(3), pages 1-21, February.
    4. Yanjie Liu & Cheng Xiang, 2024. "A Comprehensive Framework for Evaluating Bridge Resilience: Safety, Social, Environmental, and Economic Perspectives," Sustainability, MDPI, vol. 16(3), pages 1-22, January.
    5. Beniamino Russo & Manuel Gómez Valentín & Jackson Tellez-Álvarez, 2021. "The Relevance of Grated Inlets within Surface Drainage Systems in the Field of Urban Flood Resilience. A Review of Several Experimental and Numerical Simulation Approaches," Sustainability, MDPI, vol. 13(13), pages 1-13, June.
    6. Seyed M. H. S. Rezvani & Maria João Falcão Silva & Nuno Marques de Almeida, 2024. "Urban Resilience Index for Critical Infrastructure: A Scenario-Based Approach to Disaster Risk Reduction in Road Networks," Sustainability, MDPI, vol. 16(10), pages 1-41, May.
    7. Ivan Blečić & Arnaldo Cecchini & Emanuel Muroni & Valeria Saiu & Serafino Scanu & Giuseppe Andrea Trunfio, 2023. "Addressing Peripherality in Italy: A Critical Comparison between Inner Areas and Territorial Capital-Based Evaluations," Land, MDPI, vol. 12(2), pages 1-14, January.
    8. Talukder, Byomkesh & Hipel, Keith W., 2020. "Diagnosis of sustainability of trans-boundary water governance in the Great Lakes basin," World Development, Elsevier, vol. 129(C).
    9. Li, Zhi & Fang, Gonghuan & Chen, Yaning & Duan, Weili & Mukanov, Yerbolat, 2020. "Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming," Agricultural Water Management, Elsevier, vol. 231(C).
    10. Panagopoulos, Argyris, 2020. "A comparative study on minimum and actual energy consumption for the treatment of desalination brine," Energy, Elsevier, vol. 212(C).
    11. George Tsakiris, 2017. "Facets of Modern Water Resources Management: Prolegomena," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2899-2904, August.
    12. Carlota García Díaz & David Zambrana-Vasquez & Carmen Bartolomé, 2024. "Building Resilient Cities: A Comprehensive Review of Climate Change Adaptation Indicators for Urban Design," Energies, MDPI, vol. 17(8), pages 1-19, April.
    13. Maddah, Negin & Heydari, Babak, 2024. "Building back better: Modeling decentralized recovery in sociotechnical systems using strategic network dynamics," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    14. Libera Amenta & Lei Qu, 2020. "Experimenting with Circularity When Designing Contemporary Regions: Adaptation Strategies for More Resilient and Regenerative Metropolitan Areas of Amsterdam and Naples Developed in University Studio ," Sustainability, MDPI, vol. 12(11), pages 1-24, June.
    15. Yuan-Chien Lin & En-Dian Kuo & Wan-Ju Chi, 2021. "Analysis of Meteorological Drought Resilience and Risk Assessment of Groundwater Using Signal Analysis Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 179-197, January.
    16. Yanni Xiong & Changyou Li & Mengzhi Zou & Qian Xu, 2022. "Investigating into the Coupling and Coordination Relationship between Urban Resilience and Urbanization: A Case Study of Hunan Province, China," Sustainability, MDPI, vol. 14(10), pages 1-26, May.
    17. Jie Zhou & Wenyi Liu & Yu Lin & Benyong Wei & Yaohui Liu, 2024. "The Evaluation and Comparison of Resilience for Shelters in Old and New Urban Districts: A Case Study in Kunming City, China," Sustainability, MDPI, vol. 16(7), pages 1-15, April.
    18. Yuan Zhi & Paul B. Hamilton & Xiufeng Wang & Zundong Zhang & Longyue Liang, 2018. "Game Theory Analysis of the Virtual Water Strategy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4747-4761, November.
    19. Jorge Salas & Víctor Yepes, 2020. "Enhancing Sustainability and Resilience through Multi-Level Infrastructure Planning," IJERPH, MDPI, vol. 17(3), pages 1-22, February.
    20. World Bank, 2020. "Managing Groundwater for Drought Resilience in South Asia," World Bank Publications - Reports 33332, The World Bank Group.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11151-:d:1196092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.