IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12906-d684832.html
   My bibliography  Save this article

Solving Traveling Salesman Problem with Time Windows Using Hybrid Pointer Networks with Time Features

Author

Listed:
  • Majed G. Alharbi

    (Department of Mathematics, College of Science and Arts, Qassim University, Al Mithnab 56648, Saudi Arabia)

  • Ahmed Stohy

    (Department of Computer and Systems Engineering, Minya University, Minya 61512, Egypt)

  • Mohammed Elhenawy

    (Centre for Accident Research and Road Safety, Queensland University of Technology, Brisbane 4059, Australia)

  • Mahmoud Masoud

    (Centre for Accident Research and Road Safety, Queensland University of Technology, Brisbane 4059, Australia)

  • Hamiden Abd El-Wahed Khalifa

    (Department of Mathematics, College of Science and Arts, Qassim University, Al-Badaya 51951, Saudi Arabia
    Department of Operations Research, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt)

Abstract

This paper introduces a time efficient deep learning-based solution to the traveling salesman problem with time window (TSPTW). Our goal is to reduce the total tour length traveled by -*the agent without violating any time limitations. This will aid in decreasing the time required to supply any type of service, as well as lowering the emissions produced by automobiles, allowing our planet to recover from air pollution emissions. The proposed model is a variation of the pointer networks that has a better ability to encode the TSPTW problems. The model proposed in this paper is inspired from our previous work that introduces a hybrid context encoder and a multi attention decoder. The hybrid encoder primarily comprises the transformer encoder and the graph encoder; these encoders encode the feature vector before passing it to the attention decoder layer. The decoder consists of transformer context and graph context as well. The output attentions from the two decoders are aggregated and used to select the following step in the trip. To the best of our knowledge, our network is the first neural model that will be able to solve medium-size TSPTW problems. Moreover, we conducted sensitivity analysis to explore how the model performance changes as the time window width in the training and testing data changes. The experimental work shows that our proposed model outperforms the state-of-the-art model for TSPTW of sizes 20, 50 and 100 nodes/cities. We expect that our model will become state-of-the-art methodology for solving the TSPTW problems.

Suggested Citation

  • Majed G. Alharbi & Ahmed Stohy & Mohammed Elhenawy & Mahmoud Masoud & Hamiden Abd El-Wahed Khalifa, 2021. "Solving Traveling Salesman Problem with Time Windows Using Hybrid Pointer Networks with Time Features," Sustainability, MDPI, vol. 13(22), pages 1-12, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12906-:d:684832
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12906/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12906/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pesant, Gilles & Gendreau, Michel & Potvin, Jean-Yves & Rousseau, Jean-Marc, 1999. "On the flexibility of constraint programming models: From single to multiple time windows for the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 117(2), pages 253-263, September.
    2. Gilles Pesant & Michel Gendreau & Jean-Yves Potvin & Jean-Marc Rousseau, 1998. "An Exact Constraint Logic Programming Algorithm for the Traveling Salesman Problem with Time Windows," Transportation Science, INFORMS, vol. 32(1), pages 12-29, February.
    3. Edward K. Baker, 1983. "Technical Note—An Exact Algorithm for the Time-Constrained Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(5), pages 938-945, October.
    4. Michel Gendreau & Alain Hertz & Gilbert Laporte & Mihnea Stan, 1998. "A Generalized Insertion Heuristic for the Traveling Salesman Problem with Time Windows," Operations Research, INFORMS, vol. 46(3), pages 330-335, June.
    5. Yvan Dumas & Jacques Desrosiers & Eric Gelinas & Marius M. Solomon, 1995. "An Optimal Algorithm for the Traveling Salesman Problem with Time Windows," Operations Research, INFORMS, vol. 43(2), pages 367-371, April.
    6. Jeffrey W. Ohlmann & Barrett W. Thomas, 2007. "A Compressed-Annealing Heuristic for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 80-90, February.
    7. Roberto Wolfler Calvo, 2000. "A New Heuristic for the Traveling Salesman Problem with Time Windows," Transportation Science, INFORMS, vol. 34(1), pages 113-124, February.
    8. Michel Gendreau & Alain Hertz & Gilbert Laporte, 1992. "New Insertion and Postoptimization Procedures for the Traveling Salesman Problem," Operations Research, INFORMS, vol. 40(6), pages 1086-1094, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dieter, Peter & Caron, Matthew & Schryen, Guido, 2023. "Integrating driver behavior into last-mile delivery routing: Combining machine learning and optimization in a hybrid decision support framework," European Journal of Operational Research, Elsevier, vol. 311(1), pages 283-300.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.
    2. Jeffrey W. Ohlmann & Barrett W. Thomas, 2007. "A Compressed-Annealing Heuristic for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 80-90, February.
    3. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2012. "New State-Space Relaxations for Solving the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 356-371, August.
    4. Dieter, Peter & Caron, Matthew & Schryen, Guido, 2023. "Integrating driver behavior into last-mile delivery routing: Combining machine learning and optimization in a hybrid decision support framework," European Journal of Operational Research, Elsevier, vol. 311(1), pages 283-300.
    5. Filippo Focacci & Andrea Lodi & Michela Milano, 2002. "A Hybrid Exact Algorithm for the TSPTW," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 403-417, November.
    6. Fontaine, Romain & Dibangoye, Jilles & Solnon, Christine, 2023. "Exact and anytime approach for solving the time dependent traveling salesman problem with time windows," European Journal of Operational Research, Elsevier, vol. 311(3), pages 833-844.
    7. Albiach, José & Sanchis, José Marí­a & Soler, David, 2008. "An asymmetric TSP with time windows and with time-dependent travel times and costs: An exact solution through a graph transformation," European Journal of Operational Research, Elsevier, vol. 189(3), pages 789-802, September.
    8. Chang, Tsung-Sheng & Wan, Yat-wah & OOI, Wei Tsang, 2009. "A stochastic dynamic traveling salesman problem with hard time windows," European Journal of Operational Research, Elsevier, vol. 198(3), pages 748-759, November.
    9. Sanjeeb Dash & Oktay Günlük & Andrea Lodi & Andrea Tramontani, 2012. "A Time Bucket Formulation for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 132-147, February.
    10. Roberti, R. & Wen, M., 2016. "The Electric Traveling Salesman Problem with Time Windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 32-52.
    11. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    12. Christian Tilk & Stefan Irnich, 2014. "Dynamic Programming for the Minimum Tour Duration Problem," Working Papers 1408, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 04 Aug 2014.
    13. Ha-Bang Ban, 2021. "A metaheuristic for the delivery man problem with time windows," Journal of Combinatorial Optimization, Springer, vol. 41(4), pages 794-816, May.
    14. Christian Tilk & Stefan Irnich, 2017. "Dynamic Programming for the Minimum Tour Duration Problem," Transportation Science, INFORMS, vol. 51(2), pages 549-565, May.
    15. Roberto Wolfler Calvo, 2000. "A New Heuristic for the Traveling Salesman Problem with Time Windows," Transportation Science, INFORMS, vol. 34(1), pages 113-124, February.
    16. Anirudh Subramanyam & Chrysanthos E. Gounaris, 2018. "A Decomposition Algorithm for the Consistent Traveling Salesman Problem with Vehicle Idling," Transportation Science, INFORMS, vol. 52(2), pages 386-401, March.
    17. Gonzalo Lera-Romero & Juan José Miranda Bront & Francisco J. Soulignac, 2022. "Dynamic Programming for the Time-Dependent Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3292-3308, November.
    18. Enrico Bartolini & Dominik Goeke & Michael Schneider & Mengdie Ye, 2021. "The Robust Traveling Salesman Problem with Time Windows Under Knapsack-Constrained Travel Time Uncertainty," Transportation Science, INFORMS, vol. 55(2), pages 371-394, March.
    19. Rui Chen & Xinglu Liu & Lixin Miao & Peng Yang, 2020. "Electric Vehicle Tour Planning Considering Range Anxiety," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    20. Claudio Gambella & Joe Naoum-Sawaya & Bissan Ghaddar, 2018. "The Vehicle Routing Problem with Floating Targets: Formulation and Solution Approaches," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 554-569, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12906-:d:684832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.