IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v31y1983i5p938-945.html
   My bibliography  Save this article

Technical Note—An Exact Algorithm for the Time-Constrained Traveling Salesman Problem

Author

Listed:
  • Edward K. Baker

    (University of Miami, Coral Gables, Florida)

Abstract

The time-constrained traveling salesman problem is a variation of the familiar traveling salesman problem that includes time window constraints on the time a particular city, or cities, may be visited. This note presents a concise formulation of the time-constrained traveling salesman problem. The model assumes that the distances of the problem are symmetrical and that the triangle inequality holds. Additionally, the model allows the salesman to wait at a city, if necessary, for a time window to open. The dual of the formulation is shown to be a disjunctive graph model, which is well known from scheduling theory. A longest path algorithm is used to obtain bounding information for subproblems in a branch and bound solution procedure. Computational results are presented for several small to moderate size problems.

Suggested Citation

  • Edward K. Baker, 1983. "Technical Note—An Exact Algorithm for the Time-Constrained Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(5), pages 938-945, October.
  • Handle: RePEc:inm:oropre:v:31:y:1983:i:5:p:938-945
    DOI: 10.1287/opre.31.5.938
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.31.5.938
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.31.5.938?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filippo Focacci & Andrea Lodi & Michela Milano, 2002. "A Hybrid Exact Algorithm for the TSPTW," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 403-417, November.
    2. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2012. "New State-Space Relaxations for Solving the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 356-371, August.
    3. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.
    4. Sanjeeb Dash & Oktay Günlük & Andrea Lodi & Andrea Tramontani, 2012. "A Time Bucket Formulation for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 132-147, February.
    5. Rui Chen & Xinglu Liu & Lixin Miao & Peng Yang, 2020. "Electric Vehicle Tour Planning Considering Range Anxiety," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    6. Anirudh Subramanyam & Chrysanthos E. Gounaris, 2018. "A Decomposition Algorithm for the Consistent Traveling Salesman Problem with Vehicle Idling," Transportation Science, INFORMS, vol. 52(2), pages 386-401, March.
    7. Jeffrey W. Ohlmann & Barrett W. Thomas, 2007. "A Compressed-Annealing Heuristic for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 80-90, February.
    8. Majed G. Alharbi & Ahmed Stohy & Mohammed Elhenawy & Mahmoud Masoud & Hamiden Abd El-Wahed Khalifa, 2021. "Solving Traveling Salesman Problem with Time Windows Using Hybrid Pointer Networks with Time Features," Sustainability, MDPI, vol. 13(22), pages 1-12, November.
    9. Roberto Wolfler Calvo, 2000. "A New Heuristic for the Traveling Salesman Problem with Time Windows," Transportation Science, INFORMS, vol. 34(1), pages 113-124, February.
    10. Y-L Chen & L-J Hsiao & K Tang, 2003. "Time analysis for planning a path in a time-window network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 860-870, August.
    11. Egon Balas & Neil Simonetti, 2001. "Linear Time Dynamic-Programming Algorithms for New Classes of Restricted TSPs: A Computational Study," INFORMS Journal on Computing, INFORMS, vol. 13(1), pages 56-75, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:31:y:1983:i:5:p:938-945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.