IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v189y2008i3p789-802.html
   My bibliography  Save this article

An asymmetric TSP with time windows and with time-dependent travel times and costs: An exact solution through a graph transformation

Author

Listed:
  • Albiach, José
  • Sanchis, José Marí­a
  • Soler, David

Abstract

In this paper we deal with an extended version of the Asymmetric Traveling Salesman Problem with Time Windows (ATSPTW) that considers time-dependent travel times and costs, for a more accurate approximation of some routing problems inside large cities, in which the time or cost of traversing certain streets (e.g. main avenues) depends on the moment of the day (for example rush-hours). Unlike other existing papers about time-dependent routing problems, we focus on an exact method for solving this new problem. For this end we first transform the problem into an Asymmetric Generalized TSP and then into a Graphical Asymmetric TSP. In this way, we can apply a known exact algorithm for the Mixed General Routing Problem, which seems to run well with our resulting instances. Computational results are presented on a set of 270 adapted instances from benchmark ATSPTW instances.

Suggested Citation

  • Albiach, José & Sanchis, José Marí­a & Soler, David, 2008. "An asymmetric TSP with time windows and with time-dependent travel times and costs: An exact solution through a graph transformation," European Journal of Operational Research, Elsevier, vol. 189(3), pages 789-802, September.
  • Handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:789-802
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(06)01185-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gilles Pesant & Michel Gendreau & Jean-Yves Potvin & Jean-Marc Rousseau, 1998. "An Exact Constraint Logic Programming Algorithm for the Traveling Salesman Problem with Time Windows," Transportation Science, INFORMS, vol. 32(1), pages 12-29, February.
    2. Michel Gendreau & Alain Hertz & Gilbert Laporte & Mihnea Stan, 1998. "A Generalized Insertion Heuristic for the Traveling Salesman Problem with Time Windows," Operations Research, INFORMS, vol. 46(3), pages 330-335, June.
    3. Bernhard Fleischmann & Martin Gietz & Stefan Gnutzmann, 2004. "Time-Varying Travel Times in Vehicle Routing," Transportation Science, INFORMS, vol. 38(2), pages 160-173, May.
    4. Chryssi Malandraki & Mark S. Daskin, 1992. "Time Dependent Vehicle Routing Problems: Formulations, Properties and Heuristic Algorithms," Transportation Science, INFORMS, vol. 26(3), pages 185-200, August.
    5. Guy Desaulniers & Daniel Villeneuve, 2000. "The Shortest Path Problem with Time Windows and Linear Waiting Costs," Transportation Science, INFORMS, vol. 34(3), pages 312-319, August.
    6. Enrique Benavent & David Soler, 1999. "The Directed Rural Postman Problem with Turn Penalties," Transportation Science, INFORMS, vol. 33(4), pages 408-418, November.
    7. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    8. M Blais & G Laporte, 2003. "Exact solution of the generalized routing problem through graph transformations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 906-910, August.
    9. Filippo Focacci & Andrea Lodi & Michela Milano, 2002. "A Hybrid Exact Algorithm for the TSPTW," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 403-417, November.
    10. Malandraki, Chryssi & Dial, Robert B., 1996. "A restricted dynamic programming heuristic algorithm for the time dependent traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 90(1), pages 45-55, April.
    11. Matteo Fischetti & Paolo Toth, 1997. "A Polyhedral Approach to the Asymmetric Traveling Salesman Problem," Management Science, INFORMS, vol. 43(11), pages 1520-1536, November.
    12. Yvan Dumas & Jacques Desrosiers & Eric Gelinas & Marius M. Solomon, 1995. "An Optimal Algorithm for the Traveling Salesman Problem with Time Windows," Operations Research, INFORMS, vol. 43(2), pages 367-371, April.
    13. Roberto Wolfler Calvo, 2000. "A New Heuristic for the Traveling Salesman Problem with Time Windows," Transportation Science, INFORMS, vol. 34(1), pages 113-124, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    2. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2022. "A two-stage stochastic programming model for seaport berth and channel planning with uncertainties in ship arrival and handling times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    3. Vu, Duc Minh & Hewitt, Mike & Vu, Duc D., 2022. "Solving the time dependent minimum tour duration and delivery man problems with dynamic discretization discovery," European Journal of Operational Research, Elsevier, vol. 302(3), pages 831-846.
    4. Kinable, Joris & Cire, Andre A. & van Hoeve, Willem-Jan, 2017. "Hybrid optimization methods for time-dependent sequencing problems," European Journal of Operational Research, Elsevier, vol. 259(3), pages 887-897.
    5. Ari, Ibrahim & Aksakalli, Vural & Aydogˇdu, Volkan & Kum, Serdar, 2013. "Optimal ship navigation with safety distance and realistic turn constraints," European Journal of Operational Research, Elsevier, vol. 229(3), pages 707-717.
    6. Sanjeeb Dash & Oktay Günlük & Andrea Lodi & Andrea Tramontani, 2012. "A Time Bucket Formulation for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 132-147, February.
    7. Rui Chen & Xinglu Liu & Lixin Miao & Peng Yang, 2020. "Electric Vehicle Tour Planning Considering Range Anxiety," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    8. Natashia L. Boland & Martin W. P. Savelsbergh, 2019. "Perspectives on integer programming for time-dependent models," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 147-173, July.
    9. Merve Kayacı Çodur & Mustafa Yılmaz, 2020. "A time-dependent hierarchical Chinese postman problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 337-366, March.
    10. Ivana Semanjski & Sidharta Gautama, 2024. "Sustainable Time-Dependent Cheapest Path Problem with Integrated Collaborative Stakeholders’ Perspectives," Sustainability, MDPI, vol. 16(9), pages 1-19, April.
    11. Furini, Fabio & Persiani, Carlo Alfredo & Toth, Paolo, 2016. "The Time Dependent Traveling Salesman Planning Problem in Controlled Airspace," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 38-55.
    12. Adamo, Tommaso & Gendreau, Michel & Ghiani, Gianpaolo & Guerriero, Emanuela, 2024. "A review of recent advances in time-dependent vehicle routing," European Journal of Operational Research, Elsevier, vol. 319(1), pages 1-15.
    13. Anke Stieber & Armin Fügenschuh, 2022. "Dealing with time in the multiple traveling salespersons problem with moving targets," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(3), pages 991-1017, September.
    14. Jean-François Cordeau & Gianpaolo Ghiani & Emanuela Guerriero, 2014. "Analysis and Branch-and-Cut Algorithm for the Time-Dependent Travelling Salesman Problem," Transportation Science, INFORMS, vol. 48(1), pages 46-58, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fontaine, Romain & Dibangoye, Jilles & Solnon, Christine, 2023. "Exact and anytime approach for solving the time dependent traveling salesman problem with time windows," European Journal of Operational Research, Elsevier, vol. 311(3), pages 833-844.
    2. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2012. "New State-Space Relaxations for Solving the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 356-371, August.
    3. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.
    4. Jeffrey W. Ohlmann & Barrett W. Thomas, 2007. "A Compressed-Annealing Heuristic for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 80-90, February.
    5. Furini, Fabio & Persiani, Carlo Alfredo & Toth, Paolo, 2016. "The Time Dependent Traveling Salesman Planning Problem in Controlled Airspace," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 38-55.
    6. Rifki, Omar & Chiabaut, Nicolas & Solnon, Christine, 2020. "On the impact of spatio-temporal granularity of traffic conditions on the quality of pickup and delivery optimal tours," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    7. Van Woensel, T. & Kerbache, L. & Peremans, H. & Vandaele, N., 2008. "Vehicle routing with dynamic travel times: A queueing approach," European Journal of Operational Research, Elsevier, vol. 186(3), pages 990-1007, May.
    8. Majed G. Alharbi & Ahmed Stohy & Mohammed Elhenawy & Mahmoud Masoud & Hamiden Abd El-Wahed Khalifa, 2021. "Solving Traveling Salesman Problem with Time Windows Using Hybrid Pointer Networks with Time Features," Sustainability, MDPI, vol. 13(22), pages 1-12, November.
    9. Andres Figliozzi, Miguel, 2012. "The time dependent vehicle routing problem with time windows: Benchmark problems, an efficient solution algorithm, and solution characteristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 616-636.
    10. Xiao, Yiyong & Konak, Abdullah, 2016. "The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 146-166.
    11. Daqing Wu & Chenxiang Wu, 2022. "Research on the Time-Dependent Split Delivery Green Vehicle Routing Problem for Fresh Agricultural Products with Multiple Time Windows," Agriculture, MDPI, vol. 12(6), pages 1-28, May.
    12. Dieter, Peter & Caron, Matthew & Schryen, Guido, 2023. "Integrating driver behavior into last-mile delivery routing: Combining machine learning and optimization in a hybrid decision support framework," European Journal of Operational Research, Elsevier, vol. 311(1), pages 283-300.
    13. Huang, Yixiao & Zhao, Lei & Van Woensel, Tom & Gross, Jean-Philippe, 2017. "Time-dependent vehicle routing problem with path flexibility," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 169-195.
    14. Chang, Tsung-Sheng & Wan, Yat-wah & OOI, Wei Tsang, 2009. "A stochastic dynamic traveling salesman problem with hard time windows," European Journal of Operational Research, Elsevier, vol. 198(3), pages 748-759, November.
    15. Said Dabia & Stefan Ropke & Tom van Woensel & Ton De Kok, 2013. "Branch and Price for the Time-Dependent Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 47(3), pages 380-396, August.
    16. Filippo Focacci & Andrea Lodi & Michela Milano, 2002. "A Hybrid Exact Algorithm for the TSPTW," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 403-417, November.
    17. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    18. Sanjeeb Dash & Oktay Günlük & Andrea Lodi & Andrea Tramontani, 2012. "A Time Bucket Formulation for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 132-147, February.
    19. Roberti, R. & Wen, M., 2016. "The Electric Traveling Salesman Problem with Time Windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 32-52.
    20. D Soler & E Martínez & J C Micó, 2008. "A transformation for the mixed general routing problem with turn penalties," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(4), pages 540-547, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:789-802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.