IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12766-d682241.html
   My bibliography  Save this article

Ensuring Sustainable Freight Carriage through Interoperability between Maritime and Rail Transport

Author

Listed:
  • Aldona Jarašūnienė

    (Department of Logistics and Transport Management, Vilnius Gediminas Technical University, Plytinės Str. 27, LT-10105 Vilnius, Lithuania)

  • Kristina Čižiūnienė

    (Department of Logistics and Transport Management, Vilnius Gediminas Technical University, Plytinės Str. 27, LT-10105 Vilnius, Lithuania)

Abstract

With increasing freight flows and their carriage, sustainability in the transport sector is one of today’s key challenges. With expanding geographical coverage of consumers, manufacturers and all participants in the logistics chain, sustainable carriage is becoming a considerable challenge, which can possibly be tackled by interoperability between different modes of transport. However, even in this context, there are endless difficulties, such as the compatibility of modes of transport, completion of documentation, compatibility of information systems and technologies, and the like. This article examines the importance of interoperability between maritime and rail transport in the development of international freight carriage. A theoretical assessment of maritime and rail transport interoperability covering the need for the application of information systems (IS) in the field of maritime and rail transport is presented, as well as distinguishing research problems relating to this interoperability and the presentation of key results. The quantitative and qualitative research methods applied in this article, the results of the research as well as the expert assessment of the activities of companies providing maritime and rail transport services are presented to verify the adaptation of the developed model.

Suggested Citation

  • Aldona Jarašūnienė & Kristina Čižiūnienė, 2021. "Ensuring Sustainable Freight Carriage through Interoperability between Maritime and Rail Transport," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12766-:d:682241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12766/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12766/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiahao Zhao & Xiaoning Zhu & Li Wang, 2020. "Study on Scheme of Outbound Railway Container Organization in Rail-Water Intermodal Transportation," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    2. Mengqiu Lu & Yu Chen & Robin Morphet & Yuqi Lu & Enkang Li, 2019. "The spatial competition between containerised rail and sea transport in Eurasia," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-11, December.
    3. Hamdi Giray Resat & Metin Turkay, 2019. "A bi-objective model for design and analysis of sustainable intermodal transportation systems: a case study of Turkey," International Journal of Production Research, Taylor & Francis Journals, vol. 57(19), pages 6146-6161, October.
    4. Yan Sun & Xinya Li, 2019. "Fuzzy Programming Approaches for Modeling a Customer-Centred Freight Routing Problem in the Road-Rail Intermodal Hub-and-Spoke Network with Fuzzy Soft Time Windows and Multiple Sources of Time Uncerta," Mathematics, MDPI, vol. 7(8), pages 1-40, August.
    5. Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Gao, Ziyou & Qi, Jianguo, 2020. "Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 64-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrej David & Peter Mako & Jan Lizbetin & Patrik Bohm, 2021. "The Impact of an Environmental Way of Customer’s Thinking on a Range of Choice from Transport Routes in Maritime Transport," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    2. Volodymyr Polishchuk & Miroslav Kelemen & Beáta Gavurová & Costas Varotsos & Rudolf Andoga & Martin Gera & John Christodoulakis & Radovan Soušek & Jaroslaw Kozuba & Peter Blišťan & Stanislav Szabo, 2019. "A Fuzzy Model of Risk Assessment for Environmental Start-Up Projects in the Air Transport Sector," IJERPH, MDPI, vol. 16(19), pages 1-19, September.
    3. Chen, Zhiwei & Li, Xiaopeng, 2021. "Designing corridor systems with modular autonomous vehicles enabling station-wise docking: Discrete modeling method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    4. Qi, Yingxiu & Harrod, Steven & Psaraftis, Harilaos N. & Lang, Maoxiang, 2022. "Transport service selection and routing with carbon emissions and inventory costs consideration in the context of the Belt and Road Initiative," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    5. Saleh, Ali & Remenyte-Prescott, Rasa & Prescott, Darren & Chiachío, Manuel, 2024. "Intelligent and adaptive asset management model for railway sections using the iPN method," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Zhang, Huimin & Li, Shukai & Wang, Yihui & Yang, Lixing & Gao, Ziyou, 2021. "Collaborative real-time optimization strategy for train rescheduling and track emergency maintenance of high-speed railway: A Lagrangian relaxation-based decomposition algorithm," Omega, Elsevier, vol. 102(C).
    7. Zhengwen Liao, 2023. "Rescheduling Out-of-Gauge Trains with Speed Restrictions and Temporal Blockades on the Opposite-Direction Track," Mathematics, MDPI, vol. 11(12), pages 1-26, June.
    8. Tareq Abu-Aisha & Jean-François Audy & Mustapha Ouhimmou, 2024. "Toward an efficient sea-rail intermodal transportation system: a systematic literature review," Journal of Shipping and Trade, Springer, vol. 9(1), pages 1-27, December.
    9. Yan Sun & Xinya Li, 2019. "Fuzzy Programming Approaches for Modeling a Customer-Centred Freight Routing Problem in the Road-Rail Intermodal Hub-and-Spoke Network with Fuzzy Soft Time Windows and Multiple Sources of Time Uncerta," Mathematics, MDPI, vol. 7(8), pages 1-40, August.
    10. Chunjiao Shao & Haiyan Wang & Meng Yu, 2022. "Multi-Objective Optimization of Customer-Centered Intermodal Freight Routing Problem Based on the Combination of DRSA and NSGA-III," Sustainability, MDPI, vol. 14(5), pages 1-25, March.
    11. Zhang, Qin & Lusby, Richard Martin & Shang, Pan & Zhu, Xiaoning, 2022. "A heuristic approach to integrate train timetabling, platforming, and railway network maintenance scheduling decisions," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 210-238.
    12. Zhang, Chuntian & Gao, Yuan & Cacchiani, Valentina & Yang, Lixing & Gao, Ziyou, 2023. "Train rescheduling for large-scale disruptions in a large-scale railway network," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    13. Ji, Hangyu & Wang, Rui & Zhang, Chuntian & Yin, Jiateng & Ma, Lin & Yang, Lixing, 2024. "Optimization of train schedule with uncertain maintenance plans in high-speed railways: A stochastic programming approach," Omega, Elsevier, vol. 124(C).
    14. Ansarilari, Zahra & Bodur, Merve & Shalaby, Amer, 2024. "A novel model for transfer synchronization in transit networks and a Lagrangian-based heuristic solution method," European Journal of Operational Research, Elsevier, vol. 317(1), pages 76-91.
    15. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.
    16. Rizwan Shoukat, 2024. "How Recycled Grade is Economical? An Application of MILP and Evolutionary Algorithms in Intermodal Networks Under Uncertain Demand," Networks and Spatial Economics, Springer, vol. 24(1), pages 231-260, March.
    17. Zhen, Lu & Zhang, Nianzu & Yang, Zhiyuan, 2023. "Integrated optimization for high-speed railway express system with multiple modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    18. Cavalcante, Cristiano A.V. & Lopes, Rodrigo S. & Scarf, Philip A., 2021. "Inspection and replacement policy with a fixed periodic schedule," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    19. Rizwan Shoukat, 2023. "Multimodal or intermodal: greenhouse gas emissions in less than container load in China–Pakistan trade," Environment Systems and Decisions, Springer, vol. 43(2), pages 265-280, June.
    20. Jing Zuo & Mengxing Shang & Jianwu Dang, 2022. "Research on the Optimization Model of Railway Emergency Rescue Network Considering Space-Time Accessibility," Sustainability, MDPI, vol. 14(21), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12766-:d:682241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.