IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12654-d680245.html
   My bibliography  Save this article

Hydrogen-Based Energy Storage Systems for Large-Scale Data Center Applications

Author

Listed:
  • Asha-Dee N. Celestine

    (US Department of Energy, Hydrogen and Fuel Cell Technologies Office, 1000 Independence Avenue SW, Washington, DC 20585, USA)

  • Martin Sulic

    (US Department of Energy, Hydrogen and Fuel Cell Technologies Office, 1000 Independence Avenue SW, Washington, DC 20585, USA)

  • Marika Wieliczko

    (US Department of Energy, Hydrogen and Fuel Cell Technologies Office, 1000 Independence Avenue SW, Washington, DC 20585, USA)

  • Ned T. Stetson

    (US Department of Energy, Hydrogen and Fuel Cell Technologies Office, 1000 Independence Avenue SW, Washington, DC 20585, USA)

Abstract

Global demand for data and data access has spurred the rapid growth of the data center industry. To meet demands, data centers must provide uninterrupted service even during the loss of primary power. Service providers seeking ways to eliminate their carbon footprint are increasingly looking to clean and sustainable energy solutions, such as hydrogen technologies, as alternatives to traditional backup generators. In this viewpoint, a survey of the current state of data centers and hydrogen-based technologies is provided along with a discussion of the hydrogen storage and infrastructure requirements needed for large-scale backup power applications at data centers.

Suggested Citation

  • Asha-Dee N. Celestine & Martin Sulic & Marika Wieliczko & Ned T. Stetson, 2021. "Hydrogen-Based Energy Storage Systems for Large-Scale Data Center Applications," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12654-:d:680245
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tarkowski, Radoslaw, 2019. "Underground hydrogen storage: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 86-94.
    2. Niaz, Saba & Manzoor, Taniya & Pandith, Altaf Hussain, 2015. "Hydrogen storage: Materials, methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 457-469.
    3. Kast, James & Morrison, Geoffrey & Gangloff, John J. & Vijayagopal, Ram & Marcinkoski, Jason, 2018. "Designing hydrogen fuel cell electric trucks in a diverse medium and heavy duty market," Research in Transportation Economics, Elsevier, vol. 70(C), pages 139-147.
    4. Mitchell-Jackson, J. & Koomey, J.G. & Nordman, B. & Blazek, M., 2003. "Data center power requirements: measurements from Silicon Valley," Energy, Elsevier, vol. 28(8), pages 837-850.
    5. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    6. Alauddin Ahmed & Saona Seth & Justin Purewal & Antek G. Wong-Foy & Mike Veenstra & Adam J. Matzger & Donald J. Siegel, 2019. "Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Jianpeng & Chen, Liubiao & Liu, Xuming & Zhu, Honglai & Zhou, Yuan & Wang, Junjie, 2020. "Thermodynamic optimization of composite insulation system with cold shield for liquid hydrogen zero-boil-off storage," Renewable Energy, Elsevier, vol. 147(P1), pages 824-832.
    2. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    4. Cha, Junyoung & Park, Yongha & Brigljević, Boris & Lee, Boreum & Lim, Dongjun & Lee, Taeho & Jeong, Hyangsoo & Kim, Yongmin & Sohn, Hyuntae & Mikulčić, Hrvoje & Lee, Kyung Moon & Nam, Dong Hoon & Lee,, 2021. "An efficient process for sustainable and scalable hydrogen production from green ammonia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Aleksandra Małachowska & Natalia Łukasik & Joanna Mioduska & Jacek Gębicki, 2022. "Hydrogen Storage in Geological Formations—The Potential of Salt Caverns," Energies, MDPI, vol. 15(14), pages 1-19, July.
    6. Calabrese, M. & Russo, D. & di Benedetto, A. & Marotta, R. & Andreozzi, R., 2023. "Formate/bicarbonate interconversion for safe hydrogen storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    7. Zhu, Shijie & Shi, Xilin & Yang, Chunhe & Li, Yinping & Li, Hang & Yang, Kun & Wei, Xinxing & Bai, Weizheng & Liu, Xin, 2023. "Hydrogen loss of salt cavern hydrogen storage," Renewable Energy, Elsevier, vol. 218(C).
    8. Jahanbakhsh, Amir & Louis Potapov-Crighton, Alexander & Mosallanezhad, Abdolali & Tohidi Kaloorazi, Nina & Maroto-Valer, M. Mercedes, 2024. "Underground hydrogen storage: A UK perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    9. Song, Rui & Wu, Mingyang & Liu, Jianjun & Yang, Chunhe, 2024. "Pore scale modeling on microbial hydrogen consumption and mass transfer of multicomponent gas flow in underground hydrogen storage of depleted reservoir," Energy, Elsevier, vol. 306(C).
    10. Tarkowski, Radosław & Lankof, Leszek & Luboń, Katarzyna & Michalski, Jan, 2024. "Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland," Applied Energy, Elsevier, vol. 355(C).
    11. Wang, Heng & Xin, Yuchen & Kou, Zuhao & He, Chunyu & Li, Yunfei & Wang, Tongtong, 2024. "Unveil the role of engineering parameters on hydrogen recovery in deep saline aquifer, Rock Springs Uplift, Wyoming," Renewable Energy, Elsevier, vol. 225(C).
    12. Bohang Liu & Lei Wang & Yintong Guo & Jing Li & Hanzhi Yang, 2022. "Experimental Investigation on the Evolution of Tensile Mechanical Behavior of Cement Stone Considering the Variation of Burial Depth," Energies, MDPI, vol. 15(19), pages 1-16, October.
    13. Guizzi, Giuseppe Leo & Manno, Michele, 2012. "Fuel cell-based cogeneration system covering data centers’ energy needs," Energy, Elsevier, vol. 41(1), pages 56-64.
    14. Wiegner, J.F. & Andreasson, L.M. & Kusters, J.E.H. & Nienhuis, R.M., 2024. "Interdisciplinary perspectives on offshore energy system integration in the North Sea: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    16. Lei, Nuoa & Masanet, Eric, 2020. "Statistical analysis for predicting location-specific data center PUE and its improvement potential," Energy, Elsevier, vol. 201(C).
    17. Ahsan Ali & Muhammad Adnan Khan & Hoimyung Choi, 2022. "Hydrogen Storage Prediction in Dibenzyltoluene as Liquid Organic Hydrogen Carrier Empowered with Weighted Federated Machine Learning," Mathematics, MDPI, vol. 10(20), pages 1-14, October.
    18. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    19. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.
    20. Alina E. Kozhukhova & Stephanus P. du Preez & Dmitri G. Bessarabov, 2021. "Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12654-:d:680245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.