IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11950-d667390.html
   My bibliography  Save this article

Generating Multifunctional Landscape through Reforestation with Native Trees in the Tropical Region: A Case Study of Gunung Dahu Research Forest, Bogor, Indonesia

Author

Listed:
  • Henti Hendalastuti Rachmat

    (Forest Research and Development Center, The Ministry of Environment and Forestry, Bogor 16118, Indonesia)

  • Kirsfianti Linda Ginoga

    (Forest Research and Development Center, The Ministry of Environment and Forestry, Bogor 16118, Indonesia)

  • Yunita Lisnawati

    (Forest Research and Development Center, The Ministry of Environment and Forestry, Bogor 16118, Indonesia)

  • Asep Hidayat

    (Forest Research and Development Center, The Ministry of Environment and Forestry, Bogor 16118, Indonesia)

  • Rinaldi Imanuddin

    (Forest Research and Development Center, The Ministry of Environment and Forestry, Bogor 16118, Indonesia)

  • Rizki Ary Fambayun

    (Forest Research and Development Center, The Ministry of Environment and Forestry, Bogor 16118, Indonesia)

  • Kusumadewi Sri Yulita

    (Research Centre for Biology, Indonesian Institute of Sciences, Bogor 16911, Indonesia)

  • Arida Susilowati

    (Faculty of Forestry, Universitas Sumatera Utara, Medan 20155, Indonesia)

Abstract

Gunung Dahu Research Forest (GDRF) is a 250 ha tropical degraded land reforested by native dipterocarps species. The reforestation success was valued by evaluating the planted trees’ growth performance, their potential timber stock, natural regeneration capacity, soil improvement, biological interdependence, and environmental services. This scientific report used a combination of literature review and also primary data processing to describe the reforestation success within the area. A hilly species of Shorea platyclados showed the best growth performance with its average diameter and height of 43 cm and 23 m, respectively, with its mean diameter annual increment of 2.1 cm/year and the predicted standing stock at 220 m 3 /ha. Six Shorea species were identified to show their natural regeneration capacity and the occurrence of ectomycorrhizal fruiting bodies, predominantly by the genus Rusula, determined the establishment of biological interdependency at the site. Reforestation improved soil organic matters as revealed by high soil porosity (51.06–52.32%) and infiltration rate (120–155.33 mm/h). The reforested landscape also ensures a continuous water supply and provides an economic benefit for the community. Thus, planting native trees for reforesting degraded tropical landscapes is prospective and may deliver multiple benefits in an ecological and economic view.

Suggested Citation

  • Henti Hendalastuti Rachmat & Kirsfianti Linda Ginoga & Yunita Lisnawati & Asep Hidayat & Rinaldi Imanuddin & Rizki Ary Fambayun & Kusumadewi Sri Yulita & Arida Susilowati, 2021. "Generating Multifunctional Landscape through Reforestation with Native Trees in the Tropical Region: A Case Study of Gunung Dahu Research Forest, Bogor, Indonesia," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11950-:d:667390
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11950/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11950/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chazdon, Robin L. & Wilson, Sarah J. & Brondizio, Eduardo & Guariguata, Manuel R. & Herbohn, John, 2021. "Key challenges for governing forest and landscape restoration across different contexts," Land Use Policy, Elsevier, vol. 104(C).
    2. Thomas L. Tidwell, 2016. "Nexus between food, energy, water, and forest ecosystems in the USA," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 214-224, March.
    3. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    4. Rahman, Farahiyah Abdul & Aziz, Md Maniruzzaman A. & Saidur, R. & Bakar, Wan Azelee Wan Abu & Hainin, M.R & Putrajaya, Ramadhansyah & Hassan, Norhidayah Abdul, 2017. "Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 112-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hunggul Yudono Setio Hadi Nugroho & Yonky Indrajaya & Satria Astana & Murniati & Sri Suharti & Tyas Mutiara Basuki & Tri Wira Yuwati & Pamungkas Buana Putra & Budi Hadi Narendra & Luthfy Abdulah & Tit, 2023. "A Chronicle of Indonesia’s Forest Management: A Long Step towards Environmental Sustainability and Community Welfare," Land, MDPI, vol. 12(6), pages 1-62, June.
    2. Yonky Indrajaya & Tri Wira Yuwati & Sri Lestari & Bondan Winarno & Budi Hadi Narendra & Hunggul Yudono Setio Hadi Nugroho & Dony Rachmanadi & Pratiwi & Maman Turjaman & Rahardyan Nugroho Adi & Endang , 2022. "Tropical Forest Landscape Restoration in Indonesia: A Review," Land, MDPI, vol. 11(3), pages 1-37, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Peiliang & Jiang, Yi & Zhang, Yangyang & Liu, Songhui & Xuan, Dongxing & Lu, Jianxin & Zhang, Shipeng & Poon, Chi Sun, 2023. "Production of aragonite whiskers by carbonation of fine recycled concrete wastes: An alternative pathway for efficient CO2 sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Leonel J.R. Nunes & Catarina I.R. Meireles & Carlos J. Pinto Gomes & Nuno M.C. Almeida Ribeiro, 2019. "Forest Management and Climate Change Mitigation: A Review on Carbon Cycle Flow Models for the Sustainability of Resources," Sustainability, MDPI, vol. 11(19), pages 1-10, September.
    3. Vladimir Kindra & Andrey Rogalev & Evgeny Lisin & Sergey Osipov & Olga Zlyvko, 2021. "Techno-Economic Analysis of the Oxy-Fuel Combustion Power Cycles with Near-Zero Emissions," Energies, MDPI, vol. 14(17), pages 1-22, August.
    4. Thiyagarajan, Subramanian & Varuvel, Edwin Geo & Martin, Leenus Jesu & Beddhannan, Nagalingam, 2019. "Mitigation of carbon footprints through a blend of biofuels and oxygenates, combined with post-combustion capture system in a single cylinder CI engine," Renewable Energy, Elsevier, vol. 130(C), pages 1067-1081.
    5. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    6. Krzysztof Wiśniewski & Gabriela Rutkowska & Katarzyna Jeleniewicz & Norbert Dąbkowski & Jarosław Wójt & Marek Chalecki & Tomasz Wierzbicki, 2024. "Ecologically Friendly Building Materials: A Case Study of Clay–Ash Composites for the Efficient Management of Fly Ash from the Thermal Conversion of Sewage Sludge," Sustainability, MDPI, vol. 16(9), pages 1-18, April.
    7. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    8. Anass Berouine & Radouane Ouladsine & Mohamed Bakhouya & Mohamed Essaaidi, 2020. "Towards a Real-Time Predictive Management Approach of Indoor Air Quality in Energy-Efficient Buildings," Energies, MDPI, vol. 13(12), pages 1-16, June.
    9. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    10. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    11. Waseem Yousaf & Muhammad Sajjad Hussain & Anam Aziz, 2021. "The Role of Green Energy on Reducing the Carbon Emission in ASEAN Countries," iRASD Journal of Energy and Environment, International Research Association for Sustainable Development (iRASD), vol. 2(1), pages 34-39, June.
    12. Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.
    13. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    14. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    15. Feng Dong & Yuling Pan, 2020. "Evolution of Renewable Energy in BRI Countries: A Combined Econometric and Decomposition Approach," IJERPH, MDPI, vol. 17(22), pages 1-18, November.
    16. Roula Inglesi-Lotz & Luis Diez del Corral Morales, 2017. "The Effect of Education on a Country’s Energy Consumption: Evidence from Developed and Developing Countries," Working Papers 201733, University of Pretoria, Department of Economics.
    17. Galatioto, A. & Ricciu, R. & Salem, T. & Kinab, E., 2019. "Energy and economic analysis on retrofit actions for Italian public historic buildings," Energy, Elsevier, vol. 176(C), pages 58-66.
    18. Milad Zeraatpisheh & Reza Arababadi & Mohsen Saffari Pour, 2018. "Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs," Energies, MDPI, vol. 11(12), pages 1-19, November.
    19. Javier Uche & Amaya Martínez-Gracia & Ignacio Zabalza & Sergio Usón, 2024. "Renewable Energy Source (RES)-Based Polygeneration Systems for Multi-Family Houses," Sustainability, MDPI, vol. 16(3), pages 1-21, January.
    20. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11950-:d:667390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.