IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11614-d661216.html
   My bibliography  Save this article

Fuel Consumption Monitoring through COPERT Model—A Case Study for Urban Sustainability

Author

Listed:
  • Muhammad Ali

    (Institute of Geographical Information Systems, National University of Sciences and Technology, Islamabad 44000, Pakistan)

  • Muhammad Daud Kamal

    (Institute of Geographical Information Systems, National University of Sciences and Technology, Islamabad 44000, Pakistan)

  • Ali Tahir

    (Institute of Geographical Information Systems, National University of Sciences and Technology, Islamabad 44000, Pakistan)

  • Salman Atif

    (Institute of Geographical Information Systems, National University of Sciences and Technology, Islamabad 44000, Pakistan)

Abstract

Trackers installed in vehicles gives insights into many useful information and predict future mobility patterns and other aspects related to vehicles movement which can be used for smart and sustainable cities planning. A novel approach is used with the COPERT model to estimate fuel consumption on a huge dataset collected over a period of one year. Since the data size is enormous, Apache Spark, a big data analytical framework is used for performance gains while estimating vehicle fuel consumption with the lowest latency possible. The research presents peak and off-peak hours fuel consumption’s in three major cities, i.e., Karachi, Lahore and Islamabad. The results can assist smart city professionals to plan alternative trip routes, avoid traffic congestion in order to save fuel and time, and protect against urban pollution for effective smart city planning. The research will be a step towards Industry 5.0 by combining sustainable disruptive technologies.

Suggested Citation

  • Muhammad Ali & Muhammad Daud Kamal & Ali Tahir & Salman Atif, 2021. "Fuel Consumption Monitoring through COPERT Model—A Case Study for Urban Sustainability," Sustainability, MDPI, vol. 13(21), pages 1-12, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11614-:d:661216
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11614/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11614/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Lin & Zhang, Fayong & Kwan, Mei-Po & Wang, Ke & Zuo, Zejun & Xia, Shaotian & Zhang, Zhiyong & Zhao, Xinpei, 2020. "Space-time demand cube for spatial-temporal coverage optimization model of shared bicycle system: A study using big bike GPS data," Journal of Transport Geography, Elsevier, vol. 88(C).
    2. Wörz, Sascha & Bernhardt, Heinz, 2017. "A novel method for optimal fuel consumption estimation and planning for transportation systems," Energy, Elsevier, vol. 120(C), pages 565-572.
    3. Wu, Tian & Shen, Qu & Xu, Ming & Peng, Tianduo & Ou, Xunmin, 2018. "Development and application of an energy use and CO2 emissions reduction evaluation model for China's online car hailing services," Energy, Elsevier, vol. 154(C), pages 298-307.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maksymilian Mądziel, 2023. "Liquified Petroleum Gas-Fuelled Vehicle CO 2 Emission Modelling Based on Portable Emission Measurement System, On-Board Diagnostics Data, and Gradient-Boosting Machine Learning," Energies, MDPI, vol. 16(6), pages 1-15, March.
    2. Ying Chen & Zhigang Du & Fangtong Jiao & Shuyang Zhang, 2022. "Optimal Speed Model of Urban Underwater Tunnel Based on CO 2 Emissions Factor," Sustainability, MDPI, vol. 14(15), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiao & Wu, Tian & Zheng, Rui & Guo, Xiaoxian, 2018. "How vehicle market is segmented and influenced by subsidy policy: A theoretical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 776-782.
    2. Zhao, Yang & Jiang, Ziyue & Chen, Xinyu & Liu, Peng & Peng, Tianduo & Shu, Zhan, 2023. "Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets," Energy, Elsevier, vol. 285(C).
    3. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    4. Tan, Dongli & Meng, Yujun & Tian, Jie & Zhang, Chengtao & Zhang, Zhiqing & Yang, Guanhua & Cui, Shuwan & Hu, Jingyi & Zhao, Ziheng, 2023. "Utilization of renewable and sustainable diesel/methanol/n-butanol (DMB) blends for reducing the engine emissions in a diesel engine with different pre-injection strategies," Energy, Elsevier, vol. 269(C).
    5. Wei Chen & Jian Chen & Guopeng Yin, 2022. "Exploring side effects of ridesharing services in urban China: role of pollution–averting behavior," Electronic Commerce Research, Springer, vol. 22(4), pages 1007-1034, December.
    6. Ma, Ying & Yang, Heng & Zuo, Hongyan & Zuo, Qingsong & He, Xiaoxiang & Chen, Wei & Wei, Rongrong, 2023. "EG@Bi-MOF derived porous carbon/lauric acid composite phase change materials for thermal management of batteries," Energy, Elsevier, vol. 272(C).
    7. Cai Jia & Yanyan Chen & Tingzhao Chen & Yanan Li & Luzhou Lin, 2022. "Evolutionary Game Analysis on Sharing Bicycles and Metro Strategies: Impact of Phasing out Subsidies for Bicycle–Metro Integration Model," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    8. Gao, Sheng & Zhang, Yanhui & Zhang, Zhiqing & Tan, Dongli & Li, Junming & Yin, Zibin & Hu, Jingyi & Zhao, Ziheng, 2023. "Multi-objective optimization of the combustion chamber geometry for a highland diesel engine fueled with diesel/n-butanol/PODEn by ANN-NSGA III," Energy, Elsevier, vol. 282(C).
    9. Hu, Wenyu & E, Jiaqiang & Tan, Yan & Zhang, Feng & Liao, Gaoliang, 2022. "Modified wind energy collection devices for harvesting convective wind energy from cars and trucks moving in the highway," Energy, Elsevier, vol. 247(C).
    10. Wu, Tian & Wang, Shouyang & Wang, Lining & Tang, Xiao, 2022. "Contribution of China's online car-hailing services to its 2050 carbon target: Energy consumption assessment based on the GCAM-SE model," Energy Policy, Elsevier, vol. 160(C).
    11. Zhang, Zhiqing & Li, Jiangtao & Tian, Jie & Dong, Rui & Zou, Zhi & Gao, Sheng & Tan, Dongli, 2022. "Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends," Energy, Elsevier, vol. 249(C).
    12. Zhang, Zhiqing & Zhong, Weihuang & Mao, Chengfang & Xu, Yuejiang & Lu, Kai & Ye, Yanshuai & Guan, Wei & Pan, Mingzhang & Tan, Dongli, 2024. "Multi-objective optimization of Fe-based SCR catalyst on the NOx conversion efficiency for a diesel engine based on FGRA-ANN/RF," Energy, Elsevier, vol. 294(C).
    13. Hao Wang & Quan Liu & Hongyang Zhang & Yinlong Jin & Wenzhen Yu, 2022. "A Two-Stage Decision-Making Method Based on WebGIS for Bulk Material Transportation of Hydropower Construction," Energies, MDPI, vol. 15(5), pages 1-21, February.
    14. Ma, Ying & Yang, Heng & Zuo, Hongyan & Ma, Yi & Zuo, Qingsong & Chen, Ying & He, Xiaoxiang & Wei, Rongrong, 2023. "Three-dimensional EG@MOF matrix composite phase change materials for high efficiency battery cooling," Energy, Elsevier, vol. 278(C).
    15. Daniela Arias-Molinares & Juan Carlos García-Palomares & Gustavo Romanillos & Javier Gutiérrez, 2023. "Uncovering spatiotemporal micromobility patterns through the lens of space–time cubes and GIS tools," Journal of Geographical Systems, Springer, vol. 25(3), pages 403-427, July.
    16. Jia, Guohai & Gao, Sheng & Shu, Xiong & Ren, Bing & Zhang, Bin & Ma, Guangyu & Zhang, Jian & Liu, Hui & Li, Dongmei, 2024. "Multi-objective optimization of emission parameters of a diesel engine using oxygenated fuel and pilot injection strategy based on RSM-NSGA III," Energy, Elsevier, vol. 293(C).
    17. Feng, Changling & Deng, Yuanwang & E, Jiaqiang & Han, Dandan & Tan, Yan, 2023. "Effect analysis on hydrocarbon adsorption enhancement of ZSM-5 zeolite modified by transition metal ions in cold start of gasoline engine," Energy, Elsevier, vol. 267(C).
    18. Tan, Dongli & Wu, Yao & Lv, Junshuai & Li, Jian & Ou, Xiaoyu & Meng, Yujun & Lan, Guanglin & Chen, Yanhui & Zhang, Zhiqing, 2023. "Performance optimization of a diesel engine fueled with hydrogen/biodiesel with water addition based on the response surface methodology," Energy, Elsevier, vol. 263(PC).
    19. Hu, Wenyu & E, Jiaqiang & Zhang, Feng & Chen, Jingwei & Ma, Yinjie & Leng, Erwei, 2022. "Investigation on cooperative mechanism between convective wind energy harvesting and dust collection during vehicle driving on the highway," Energy, Elsevier, vol. 260(C).
    20. Isabella Yunfei Zeng & Jingrui Chen & Ziheng Niu & Qingfei Liu & Tian Wu, 2022. "The GHG Emissions Assessment of Online Car-Hailing Development under the Intervention of Evaluation Policies in China," Sustainability, MDPI, vol. 14(3), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11614-:d:661216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.