IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11287-d655067.html
   My bibliography  Save this article

Integrated Deep Renovation of Existing Buildings with Prefabricated Shell Exoskeleton

Author

Listed:
  • Jacopo Zanni

    (Department of Engineering and Applied Sciences, University of Bergamo, 24044 Dalmine, BG, Italy)

  • Stefano Cademartori

    (Department of Engineering and Applied Sciences, University of Bergamo, 24044 Dalmine, BG, Italy)

  • Alessandra Marini

    (Department of Engineering and Applied Sciences, University of Bergamo, 24044 Dalmine, BG, Italy)

  • Andrea Belleri

    (Department of Engineering and Applied Sciences, University of Bergamo, 24044 Dalmine, BG, Italy)

  • Chiara Passoni

    (Department of Engineering and Applied Sciences, University of Bergamo, 24044 Dalmine, BG, Italy)

  • Ezio Giuriani

    (Dipartimento di Ingegneria Civile, Architettura, Territorio e Ambiente e di Matematica, Università degli Studi di Brescia, 25123 Brescia, BS, Italy)

  • Paolo Riva

    (Department of Engineering and Applied Sciences, University of Bergamo, 24044 Dalmine, BG, Italy)

  • Barbara Angi

    (Dipartimento di Ingegneria Civile, Architettura, Territorio e Ambiente e di Matematica, Università degli Studi di Brescia, 25123 Brescia, BS, Italy)

  • Giovanni Brumana

    (Department of Engineering and Applied Sciences, University of Bergamo, 24044 Dalmine, BG, Italy)

  • Angelo Luigi Marchetti

    (Marlegno S.r.l., 24060 Bolgare, BG, Italy)

Abstract

The European goal to reach carbon neutrality in 2050 has further put the focus on the construction sector, which is responsible for great impacts on the environment, and new sustainable solutions to renovate the existing building stock are currently under development. In this paper, the AdESA (Adeguamento Energetico Sismico ed Architettonico, in Italian) system, a holistic retrofit technique for the integrated renovation of the existing buildings, is presented. The system was developed by a consortium of enterprises and universities and was applied to a pilot building. The system consists of a dry, modular and flexible shell exoskeleton technique that implements different layers depending on the building retrofit needs (cross-laminated timber (CLT) panels for the structural retrofit, thermal insulation panels for the energy efficiency amelioration, and claddings for the architectural restyling). In order to foster actual sustainability, the solution contextually targets eco-efficiency, safety and resilience. To this end, the system not only couples the structural and energy interventions to reduce the operating costs, but it is also conceived in compliance with life cycle thinking (LCT) principles to reduce impacts throughout the remaining building service life (from retrofit time to the end of its life). The system is designed to be easily mountable and demountable to allow for the reuse/recycling of its components at the end of life by adopting macro-prefabricated dry components and standardized connections, to reduce damage caused by earthquakes by reducing the allowed inter-story drift, and by amassing the possible damage into sacrificial replaceable elements. The paper describes the AdESA system from a multidisciplinary perspective and its effective application for the deep renovation of an existing gymnasium hall.

Suggested Citation

  • Jacopo Zanni & Stefano Cademartori & Alessandra Marini & Andrea Belleri & Chiara Passoni & Ezio Giuriani & Paolo Riva & Barbara Angi & Giovanni Brumana & Angelo Luigi Marchetti, 2021. "Integrated Deep Renovation of Existing Buildings with Prefabricated Shell Exoskeleton," Sustainability, MDPI, vol. 13(20), pages 1-27, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11287-:d:655067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11287/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11287/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paolo La Greca & Giuseppe Margani, 2018. "Seismic and Energy Renovation Measures for Sustainable Cities: A Critical Analysis of the Italian Scenario," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabrizio Cumo & Federica Giustini & Elisa Pennacchia & Carlo Romeo, 2022. "The “D2P” Approach: Digitalisation, Production and Performance in the Standardised Sustainable Deep Renovation of Buildings," Energies, MDPI, vol. 15(18), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emil-Sever Georgescu & Mihaela Stela Georgescu & Zina Macri & Edoardo Michele Marino & Giuseppe Margani & Vasile Meita & Radu Pana & Santi Maria Cascone & Horia Petran & Pier Paolo Rossi & Vincenzo Sa, 2018. "Seismic and Energy Renovation: A Review of the Code Requirements and Solutions in Italy and Romania," Sustainability, MDPI, vol. 10(5), pages 1-36, May.
    2. Luca Pozza & Anna Degli Esposti & Alessandra Bonoli & Diego Talledo & Luca Barbaresi & Giovanni Semprini & Marco Savoia, 2021. "Multidisciplinary Performance Assessment of an Eco-Sustainable RC-Framed Skin for the Integrated Upgrading of Existing Buildings," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    3. Giuseppe Margani & Gianpiero Evola & Carola Tardo & Edoardo Michele Marino, 2020. "Energy, Seismic, and Architectural Renovation of RC Framed Buildings with Prefabricated Timber Panels," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    4. Amedeo Caprino & Filippo Lorenzoni & Laura Carnieletto & Leonardo Feletto & Michele De Carli & Francesca da Porto, 2021. "Integrated Seismic and Energy Retrofit Interventions on a URM Masonry Building: The Case Study of the Former Courthouse in Fabriano," Sustainability, MDPI, vol. 13(17), pages 1-30, August.
    5. Zenonas Turskis & Nikolaj Goranin & Assel Nurusheva & Seilkhan Boranbayev, 2019. "A Fuzzy WASPAS-Based Approach to Determine Critical Information Infrastructures of EU Sustainable Development," Sustainability, MDPI, vol. 11(2), pages 1-25, January.
    6. Riccardo Privitera & Daniele La Rosa, 2018. "Reducing Seismic Vulnerability and Energy Demand of Cities through Green Infrastructure," Sustainability, MDPI, vol. 10(8), pages 1-21, July.
    7. Sebastiano D’Urso & Bruno Cicero, 2019. "From the Efficiency of Nature to Parametric Design. A Holistic Approach for Sustainable Building Renovation in Seismic Regions," Sustainability, MDPI, vol. 11(5), pages 1-20, February.
    8. Tiziana Basiricò & Daniele Enea, 2018. "Seismic and Energy Retrofit of the Historic Urban Fabric of Enna (Italy)," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    9. Marina Fumo & Antonio Formisano & Giulia Sibilio & Antonella Violano, 2018. "Energy and Seismic Recovering of Ancient Hamlets: the Case of Baia e Latina," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    10. Gianpiero Evola & Vincenzo Costanzo & Luigi Marletta, 2021. "Hygrothermal and Acoustic Performance of Two Innovative Envelope Renovation Solutions Developed in the e-SAFE Project," Energies, MDPI, vol. 14(13), pages 1-19, July.
    11. Valentina Pertile & Alberto Stella & Lorenzo De Stefani & Roberto Scotta, 2021. "Seismic and Energy Integrated Retrofitting of Existing Buildings with an Innovative ICF-Based System: Design Principles and Case Studies," Sustainability, MDPI, vol. 13(16), pages 1-30, August.
    12. Giovanna Acampa & Lorenzo Diana & Giorgia Marino & Rossella Marmo, 2021. "Assessing the Transformability of Public Housing through BIM," Sustainability, MDPI, vol. 13(10), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11287-:d:655067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.