IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10537-d641161.html
   My bibliography  Save this article

Many-Objective Hybrid Optimization Method for Impeller Profile Design of Low Specific Speed Centrifugal Pump in District Energy Systems

Author

Listed:
  • Zheming Tong

    (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
    School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Jiage Xin

    (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
    School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Chengzhen Ling

    (Zhejiang Fuchunjiang Hydropower Equipment Co., Ltd., Hangzhou 311504, China)

Abstract

Low specific speed centrifugal pumps (LSSCP) are widely utilized in district energy systems to promote the integration of renewable energy. However, the performance of LSSCP becomes inefficient due to harsh operating conditions resulting in substantial increase in energy consumption. Many-objective optimization is significant in improving the performance of LSSCP and promoting the sustainability of district energy systems. Among the existing optimization methods, global optimization methods are limited by high computational cost when solving many-objective optimization problems, and gradient-based optimization methods face difficulties in locating the global optimum. In the present study, a hybrid optimization method was developed for solving many-objective optimization problems of LSSCP. The LSSCP optimization result of the hybrid algorithm was compared with that of the non-dominated sorting genetic algorithm (NSGA), so as to demonstrate the capacity of the proposed method. In the designed flow condition without cavitation, the hydraulic efficiency obtained by the hybrid optimization algorithm was found to be 9.5%, 5.4%, and 4.7% higher than those of the original, NSGA-II, and NSGA-III optimized results, respectively. The shaft power was 10.3%, 8.7% and 5.1% less than said three optimized results. The maximum turbulent kinetic energy in the flow passage obtained from the hybrid optimization was only 2.2 J/kg, which was 67% and 46% less than that of the NSGA-II and NSGA-III optimized results, respectively. In the designed flow condition with cavitation, the net positive suction head critical optimized by the hybrid model was 0.857 m, which was substantially reduced compared with the original and NSGA- II optimized results.

Suggested Citation

  • Zheming Tong & Jiage Xin & Chengzhen Ling, 2021. "Many-Objective Hybrid Optimization Method for Impeller Profile Design of Low Specific Speed Centrifugal Pump in District Energy Systems," Sustainability, MDPI, vol. 13(19), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10537-:d:641161
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10537/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10537/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ioan Sarbu & Emilian Stefan Valea, 2015. "Energy Savings Potential for Pumping Water in District Heating Stations," Sustainability, MDPI, vol. 7(5), pages 1-15, May.
    2. Beatriz María Paredes-Sánchez & José Pablo Paredes & Natalia Caparrini & Elena Rivo-López, 2021. "Analysis of District Heating and Cooling Energy Systems in Spain: Resources, Technology and Management," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    3. Tong, Zheming & Cheng, Zhewu & Tong, Shuiguang, 2021. "A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Zheming Tong & Zhewu Cheng & Shuiguang Tong, 2019. "Preliminary Design of Multistage Radial Turbines Based on Rotor Loss Characteristics under Variable Operating Conditions," Energies, MDPI, vol. 12(13), pages 1-15, July.
    5. M. Hamid Siddique & Arshad Afzal & Abdus Samad, 2018. "Design Optimization of the Centrifugal Pumps via Low Fidelity Models," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zilong Hu & Di Zhu & Ruofu Xiao & Ran Tao, 2023. "Comparative Evaluation of the Immersed-Solid Method for Simulating the Flow Field around Hydrofoil," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    2. Zheming Tong & Zhongqin Yang & Qing Huang & Qiang Yao, 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition," Energies, MDPI, vol. 15(5), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huan Guo & Haoyuan Kang & Yujie Xu & Mingzhi Zhao & Yilin Zhu & Hualiang Zhang & Haisheng Chen, 2023. "Review of Coupling Methods of Compressed Air Energy Storage Systems and Renewable Energy Resources," Energies, MDPI, vol. 16(12), pages 1-22, June.
    2. Li, Yi & Yu, Hao & Tang, Dong & Li, Yi & Zhang, Guijin & Liu, Yaning, 2022. "A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods," Renewable Energy, Elsevier, vol. 187(C), pages 1130-1153.
    3. Xu, Wei & Chen, Genglin & Shi, Huijin & Zhang, Pengcheng & Chen, Xuemei, 2023. "Research on operational characteristics of coal power centrifugal fans at off-design working conditions based on flap-angle adjustment," Energy, Elsevier, vol. 284(C).
    4. Shuiguang Tong & Xiang Zhang & Zheming Tong & Yanling Wu & Ning Tang & Wei Zhong, 2019. "Online Ash Fouling Prediction for Boiler Heating Surfaces based on Wavelet Analysis and Support Vector Regression," Energies, MDPI, vol. 13(1), pages 1-20, December.
    5. King, Marcus & Jain, Anjali & Bhakar, Rohit & Mathur, Jyotirmay & Wang, Jihong, 2021. "Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    7. Ioan Sarbu & Matei Mirza & Daniel Muntean, 2022. "Integration of Renewable Energy Sources into Low-Temperature District Heating Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-28, September.
    8. Paolo Maria Congedo & Cristina Baglivo & Simone Panico & Domenico Mazzeo & Nicoletta Matera, 2022. "Optimization of Micro-CAES and TES Systems for Trigeneration," Energies, MDPI, vol. 15(17), pages 1-14, August.
    9. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    10. Wang, Zhiqi & Xie, Baoqi & Xia, Xiaoxia & Luo, Lan & Yang, Huya & Li, Xin, 2023. "Entropy production analysis of a radial inflow turbine with variable inlet guide vane for ORC application," Energy, Elsevier, vol. 265(C).
    11. Zheming Tong & Zhongqin Yang & Qing Huang & Qiang Yao, 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition," Energies, MDPI, vol. 15(5), pages 1-17, March.
    12. Rusin, Krzysztof & Ochmann, Jakub & Bartela, Łukasz & Rulik, Sebastian & Stanek, Bartosz & Jurczyk, Michał & Waniczek, Sebastian, 2022. "Influence of geometrical dimensions and particle diameter on exergy performance of packed-bed thermal energy storage," Energy, Elsevier, vol. 260(C).
    13. Tong, Zheming & Cheng, Zhewu & Tong, Shuiguang, 2021. "A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    15. Li, Yi & Liu, Yaning & Li, Yi & Hu, Bin & Gai, Peng, 2023. "Potential influences of leakage through a high permeability path on shallow aquifers in compressed air energy storage in aquifers," Renewable Energy, Elsevier, vol. 209(C), pages 661-676.
    16. Li, Hang & Ma, Hongling & Liu, Jiang & Zhu, Shijie & Zhao, Kai & Zheng, Zhuyan & Zeng, Zhen & Yang, Chunhe, 2023. "Large-scale CAES in bedded rock salt: A case study in Jiangsu Province, China," Energy, Elsevier, vol. 281(C).
    17. Yu, Shiwei & Zhou, Shuangshuang & Chen, Nan, 2024. "Multi-objective optimization of capacity and technology selection for provincial energy storage in China: The effects of peak-shifting and valley-filling," Applied Energy, Elsevier, vol. 355(C).
    18. Xia, Tian & Li, Yaowang & Zhang, Ning & Kang, Chongqing, 2022. "Role of compressed air energy storage in urban integrated energy systems with increasing wind penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Liu, Qingshan & Liu, Yingwen & Liu, Hongjiang & He, Zhilong & Xue, Xiaodai, 2022. "Comprehensive assessment and performance enhancement of compressed air energy storage: thermodynamic effect of ambient temperature," Renewable Energy, Elsevier, vol. 196(C), pages 84-98.
    20. Zhang, Yufei & Li, Ruixiong & Shao, Huaishuang & He, Xin & Zhang, Wenlong & Du, Junyu & Song, Yaoguang & Wang, Huanran, 2024. "Thermodynamic and economic analysis of a novel thermoelectric-hydrogen co-generation system combining compressed air energy storage and chemical energy," Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10537-:d:641161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.