IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10204-d634226.html
   My bibliography  Save this article

An Integrated Method to Evaluate Sustainability for Vulnerable Buildings Addressing Life Cycle Embodied Impacts and Resource Use

Author

Listed:
  • Fatma Seyma Keskin

    (Department of Civil Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK)

  • Pedro Martinez-Vazquez

    (Department of Civil Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK)

  • Charalampos Baniotopoulos

    (Department of Civil Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK)

Abstract

The vulnerability of buildings faces further scrutiny as gaps in design, construction, operation, and maintenance remain. Although there has been noticeable progress in the field, the frequency and magnitude of building damage during natural events highlight the fact that sustainable infrastructure has not yet reached all targets. In this study, sustainability aspects of vulnerable buildings are revisited to propose more robust measures to prevent damage and a lack of functionality. Those measured are underpinned by the merging of environmental and structural sustainability for one novel integrated approach. The method devises structural intervention scenarios based on damage levels and service period. It also aims at reducing resource use and embodied impacts through the discretization of standard life cycle analysis into customized stages. The integrated method to evaluate sustainability is tested on two vulnerable buildings in Turkey and Mexico, built with different codes of practice and having experienced low to medium damage during severe earthquake events. Research findings indicate that although embodied impacts form a minor part of the building life cycle environmental impacts, sustainable structural interventions can further reduce both embodied impacts and demands on natural resources. Hence strengthening vulnerable buildings can provide an advantage to help the sustainable transformation of cities.

Suggested Citation

  • Fatma Seyma Keskin & Pedro Martinez-Vazquez & Charalampos Baniotopoulos, 2021. "An Integrated Method to Evaluate Sustainability for Vulnerable Buildings Addressing Life Cycle Embodied Impacts and Resource Use," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10204-:d:634226
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tiziana Basiricò & Daniele Enea, 2018. "Seismic and Energy Retrofit of the Historic Urban Fabric of Enna (Italy)," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    2. Sonia Morán-Rodríguez & David A. Novelo-Casanova, 2018. "A methodology to estimate seismic vulnerability of health facilities. Case study: Mexico City, Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1349-1375, February.
    3. Umberto Vitiello & Antonio Salzano & Domenico Asprone & Marco Di Ludovico & Andrea Prota, 2016. "Life-Cycle Assessment of Seismic Retrofit Strategies Applied to Existing Building Structures," Sustainability, MDPI, vol. 8(12), pages 1-18, December.
    4. Tiziano Dalla Mora & Maria Pinamonti & Lorenzo Teso & Giosuè Boscato & Fabio Peron & Piercarlo Romagnoni, 2018. "Renovation of a School Building: Energy Retrofit and Seismic Upgrade in a School Building in Motta Di Livenza," Sustainability, MDPI, vol. 10(4), pages 1-24, March.
    5. Silverio HernAndez MORENO, 2012. "The Method By Factors To Estimate Service Life In Uildings Projects According To Norm Iso 15686," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 4(4), pages 5-11, December.
    6. Ru Ji & Shilin Qu, 2019. "Investigation and Evaluation of Energy Consumption Performance for Hospital Buildings in China," Sustainability, MDPI, vol. 11(6), pages 1-14, March.
    7. Mariangela De Vita & Antonio Mannella & Antonio Sabino & Alessio Marchetti, 2018. "Seismic Retrofit Measures for Masonry Walls of Historical Buildings, from an Energy Saving Perspective," Sustainability, MDPI, vol. 10(4), pages 1-17, March.
    8. Emil-Sever Georgescu & Mihaela Stela Georgescu & Zina Macri & Edoardo Michele Marino & Giuseppe Margani & Vasile Meita & Radu Pana & Santi Maria Cascone & Horia Petran & Pier Paolo Rossi & Vincenzo Sa, 2018. "Seismic and Energy Renovation: A Review of the Code Requirements and Solutions in Italy and Romania," Sustainability, MDPI, vol. 10(5), pages 1-36, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angela Moschella & Antonio Gagliano & Alessandro Lo Faro & Attilio Mondello & Angelo Salemi & Giulia Sanfilippo, 2018. "A Methodology for an Integrated Approach for Seismic and Energy Refurbishment of Historic Buildings in Mediterranean Area," Sustainability, MDPI, vol. 10(7), pages 1-22, July.
    2. Sean Hay Kim, 2018. "Assessing the Needs and Gaps of Building Information Technologies for Energy Retrofit of Historic Buildings in the Korean Context," Sustainability, MDPI, vol. 10(5), pages 1-33, April.
    3. Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    4. Bjelland, David & Brozovsky, Johannes & Hrynyszyn, Bozena Dorota, 2024. "Systematic review: Upscaling energy retrofitting to the multi-building level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    5. Guangdong Wu & Guofeng Qiang & Jian Zuo & Xianbo Zhao & Ruidong Chang, 2018. "What are the Key Indicators of Mega Sustainable Construction Projects? —A Stakeholder-Network Perspective," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    6. Nicholas Gurieff & Donna Green & Ilpo Koskinen & Mathew Lipson & Mark Baldry & Andrew Maddocks & Chris Menictas & Jens Noack & Behdad Moghtaderi & Elham Doroodchi, 2020. "Healthy Power: Reimagining Hospitals as Sustainable Energy Hubs," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    7. Zhaoxi Zhan & Wenna Xu & Lin Xu & Xinyue Qi & Wenjie Song & Chen Wang & Ziye Huang, 2022. "BIM-Based Green Hospital Building Performance Pre-Evaluation: A Case Study," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    8. L. Gerardo F. Salazar & Tiago Miguel Ferreira, 2020. "Seismic Vulnerability Assessment of Historic Constructions in the Downtown of Mexico City," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    9. Chro Hama Radha, 2023. "Retrofitting for Improving Indoor Air Quality and Energy Efficiency in the Hospital Building," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    10. Esteban A. Soto & Andrea Hernandez-Guzman & Alexander Vizcarrondo-Ortega & Amaya McNealey & Lisa B. Bosman, 2022. "Solar Energy Implementation for Health-Care Facilities in Developing and Underdeveloped Countries: Overview, Opportunities, and Challenges," Energies, MDPI, vol. 15(22), pages 1-17, November.
    11. Khaled Hossin & Hessa AlShehhi, 2024. "Energy Consumption Behavior Analysis in the UAE Educational Buildings for Sustainable Economy: A Case Study of Ras Al Khaimah Schools," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 69-76, March.
    12. Antonio Artino & Gianpiero Evola & Giuseppe Margani & Edoardo Michele Marino, 2019. "Seismic and Energy Retrofit of Apartment Buildings through Autoclaved Aerated Concrete (AAC) Blocks Infill Walls," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    13. María Beatriz Piderit & Susan Agurto & Laura Marín-Restrepo, 2019. "Reconciling Energy and Heritage: Retrofit of Heritage Buildings in Contexts of Energy Vulnerability," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    14. Carla Balocco & Alessandro Colaianni, 2018. "Assessment of Energy Sustainable Operations on a Historical Building. The Dante Alighieri High School in Florence," Sustainability, MDPI, vol. 10(6), pages 1-24, June.
    15. Sakdirat Kaewunruen & Shijie Peng & Olisa Phil-Ebosie, 2020. "Digital Twin Aided Sustainability and Vulnerability Audit for Subway Stations," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    16. Vaziri, Shabnam Mahmoudzadeh & Rezaee, Babak & Monirian, Masoud Amel, 2020. "Utilizing renewable energy sources efficiently in hospitals using demand dispatch," Renewable Energy, Elsevier, vol. 151(C), pages 551-562.
    17. Fahlstedt, Oskar & Rasmussen, Freja Nygaard & Temeljotov-Salaj, Alenka & Huang, Lizhen & Bohne, Rolf André, 2024. "Building renovations and life cycle assessment - A scoping literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    18. Chiara D’Alpaos & Paolo Bragolusi, 2020. "The Market Price Premium for Buildings Seismic Retrofitting," Sustainability, MDPI, vol. 12(21), pages 1-20, October.
    19. Małgorzata Cygańska & Magdalena Kludacz-Alessandri, 2021. "Determinants of Electrical and Thermal Energy Consumption in Hospitals According to Climate Zones in Poland," Energies, MDPI, vol. 14(22), pages 1-24, November.
    20. Jeong-Heum Cho & Sangmu Bae & Yujin Nam, 2023. "Analysis of the Energy and Economic Effects of Green Remodeling for Old Buildings: A Case Study of Public Daycare Centers in South Korea," Energies, MDPI, vol. 16(13), pages 1-25, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10204-:d:634226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.