IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9586-d622010.html
   My bibliography  Save this article

Quantitative Research Methods of Linguistic Niche and Cultural Sustainability

Author

Listed:
  • Lan Zhang

    (School of Foreign Studies, South China Agricultural University, Guangzhou 510640, China)

  • Guowen Huang

    (School of Foreign Studies, South China Agricultural University, Guangzhou 510640, China)

  • Yongtao Li

    (The College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510640, China)

  • Shitai Bao

    (The College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510640, China)

Abstract

Building Sustainable Cities and Human Communities is one of the 17 Sustainable Development Goals of the United Nations. And the sustainability of culture plays an important role in the sustainable development of cities and human communities. Language is an important carrier of culture, and the sustainability of language is the key factor in the sustainability of culture. How to measure the sustainability of language and its niche is key to achieving sustainable cities and communities. This paper systematically summarized the concept of niche and the theory of ecolinguistics as a theoretical basis for the quantitative study of the linguistic niche, and at the same time, the methods of niche measurement were summarized to provide mathematical support for the quantitative study of the linguistic niche. The Shannon-Wiener index and Pianka index were used to quantitatively study a particular linguistic niche for the first time, based on the use of Hmong and Mandarin in Jianhe County, Guizhou Province, China. The results showed that in the temporal dimension, the niche overlap indexes of Hmong and Mandarin were all above 0.9 in the sample villages, but in the spatial dimension, the niche overlap indexes of both languages were between 0.5 and 0.6. The spatial niche separation moderated the high temporal niche overlap, which made the two languages’ spatio-temporal niche overlap at a medium-high level. The quantitative study of a linguistic niche proved helpful in quantifying the level of sustainable development of language and culture, thus providing timely, accurate, and dynamic reference data to inform macro-control policies on the sustainable development of cities and human communities.

Suggested Citation

  • Lan Zhang & Guowen Huang & Yongtao Li & Shitai Bao, 2021. "Quantitative Research Methods of Linguistic Niche and Cultural Sustainability," Sustainability, MDPI, vol. 13(17), pages 1-12, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9586-:d:622010
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9586/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9586/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan M. Levine & Janneke HilleRisLambers, 2009. "The importance of niches for the maintenance of species diversity," Nature, Nature, vol. 461(7261), pages 254-257, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dandan Liu & Anmin Huang & Dewei Yang & Jianyi Lin & Jiahui Liu, 2021. "Niche-Driven Socio-Environmental Linkages and Regional Sustainable Development," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    2. Sergey Bartsev & Andrey Degermendzhi, 2023. "The Evolutionary Mechanism of Formation of Biosphere Closure," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    3. David García-Callejas & Ignasi Bartomeus & Oscar Godoy, 2021. "The spatial configuration of biotic interactions shapes coexistence-area relationships in an annual plant community," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Wojciech Bierza & Joanna Czarnecka & Agnieszka Błońska & Agnieszka Kompała-Bąba & Agnieszka Hutniczak & Bartosz Jendrzejek & Jawdat Bakr & Andrzej M. Jagodziński & Dariusz Prostański & Gabriela Woźnia, 2023. "Plant Diversity and Species Composition in Relation to Soil Enzymatic Activity in the Novel Ecosystems of Urban–Industrial Landscapes," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    5. Inga Dirks & Juliane Streit & Catharina Meinen, 2021. "Above and Belowground Relative Yield Total of Clover–Ryegrass Mixtures Exceed One in Wet and Dry Years," Agriculture, MDPI, vol. 11(3), pages 1-15, March.
    6. Roberto Cazzolla Gatti & Roger Koppl & Brian D. Fath & Stuart Kauffman & Wim Hordijk & Robert E. Ulanowicz, 2020. "On the emergence of ecological and economic niches," Journal of Bioeconomics, Springer, vol. 22(2), pages 99-127, July.
    7. Jian-Xiong Huang & Jian Zhang & Yong Shen & Ju-yu Lian & Hong-lin Cao & Wan-hui Ye & Lin-fang Wu & Yue Bin, 2014. "Different Relationships between Temporal Phylogenetic Turnover and Phylogenetic Similarity and in Two Forests Were Detected by a New Null Model," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-7, April.
    8. Shengman Lyu & Jake M. Alexander, 2022. "Competition contributes to both warm and cool range edges," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Yingming Yang & Xikai Wang & Yunlan He & Kaiming Zhang & Fan Mo & Weilong Zhang & Gang Liu, 2022. "Using Isotopic Labeling to Investigate Artemisia ordosica Root Water Uptake Depth in the Eastern Margin of Mu Us Sandy Land," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    10. Zhang, Zeyu & Bearup, Daniel & Guo, Guanming & Zhang, Helin & Liao, Jinbao, 2022. "Competition modes determine ecosystem stability in rock–paper–scissors games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    11. Wanrui Zhu & Wenhua Li & Peili Shi & Jiansheng Cao & Ning Zong & Shoubao Geng, 2021. "Intensified Interspecific Competition for Water after Afforestation with Robinia pseudoacacia into a Native Shrubland in the Taihang Mountains, Northern China," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    12. Gatti, Roberto Cazzolla & Hordijk, Wim & Kauffman, Stuart, 2017. "Biodiversity is autocatalytic," Ecological Modelling, Elsevier, vol. 346(C), pages 70-76.
    13. Yang, Yiling & Xiong, Kangning & Xiao, Jie, 2024. "A review of agroforestry biodiversity-driven provision of ecosystem services and implications for karst desertification control," Ecosystem Services, Elsevier, vol. 67(C).
    14. Meena S Sritharan & Ben C Scheele & Wade Blanchard & David B Lindenmayer, 2021. "Spatial associations between plants and vegetation community characteristics provide insights into the processes influencing plant rarity," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9586-:d:622010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.