IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8529-d605137.html
   My bibliography  Save this article

Integrated Design Process for High-Performance Buildings; a Case Study from Dubai

Author

Listed:
  • Amna Shibeika

    (Department of Architectural Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates)

  • Maatouk Khoukhi

    (Department of Architectural Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates)

  • Omar Al Khatib

    (Department of Architectural Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates)

  • Nouf Alzahmi

    (Department of Architectural Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates)

  • Shamma Tahnoon

    (Department of Architectural Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates)

  • Maryam Al Dhahri

    (Department of Architectural Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates)

  • Nouf Alshamsi

    (Department of Architectural Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates)

Abstract

Due to the scarcity of water and the harsh desert climate of the United Arab Emirates (UAE), water and energy are two of the main challenges for the design of sustainable buildings in the UAE. Relevant literature calls for the consideration of building systems and materials at the design stage to achieve high-performing buildings and to save on the operational costs of the building. The aim of this research was to design a high-performance building that meets the environmental sustainability requirements for water and energy, in the city of Dubai to reflect the technological advancements of the UAE Mars mission. This has been achieved through following an integrated design process, which was mainly focused on the evaluation and specification of the building engineering systems based on performance, besides the goal of achieving visually appealing building with advanced structural design. The performance verification of the final building design, which considered engineering systems design from conception and through the design and detailed design stages, revealed a 15% reduction in water consumption and a 60% reduction in energy consumption. This provides a valuable contribution to architectural engineering practice, by demonstrating a case study for enhancing energy and water efficiency via building design, which consequently contributes to the environmental sustainability of the built environment.

Suggested Citation

  • Amna Shibeika & Maatouk Khoukhi & Omar Al Khatib & Nouf Alzahmi & Shamma Tahnoon & Maryam Al Dhahri & Nouf Alshamsi, 2021. "Integrated Design Process for High-Performance Buildings; a Case Study from Dubai," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8529-:d:605137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Méndez Echenagucia, Tomás & Capozzoli, Alfonso & Cascone, Ylenia & Sassone, Mario, 2015. "The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis," Applied Energy, Elsevier, vol. 154(C), pages 577-591.
    2. Kazim, Ayoub M., 2007. "Assessments of primary energy consumption and its environmental consequences in the United Arab Emirates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 426-446, April.
    3. AboulNaga, Mohsen M. & Elsheshtawy, Yasser H., 2001. "Environmental sustainability assessment of buildings in hot climates: the case of the UAE," Renewable Energy, Elsevier, vol. 24(3), pages 553-563.
    4. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    5. Maatouk Khoukhi & Abeer Fuad Darsaleh & Sara Ali, 2020. "Retrofitting an Existing Office Building in the UAE Towards Achieving Low-Energy Building," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    6. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohan, Gowtham & Kumar, Uday & Pokhrel, Manoj Kumar & Martin, Andrew, 2016. "A novel solar thermal polygeneration system for sustainable production of cooling, clean water and domestic hot water in United Arab Emirates: Dynamic simulation and economic evaluation," Applied Energy, Elsevier, vol. 167(C), pages 173-188.
    2. Friess, Wilhelm A. & Rakhshan, Kambiz, 2017. "A review of passive envelope measures for improved building energy efficiency in the UAE," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 485-496.
    3. Jayaraman, Raja & Colapinto, Cinzia & Torre, Davide La & Malik, Tufail, 2015. "Multi-criteria model for sustainable development using goal programming applied to the United Arab Emirates," Energy Policy, Elsevier, vol. 87(C), pages 447-454.
    4. Tsai, Sang-Bing & Xue, Youzhi & Zhang, Jianyu & Chen, Quan & Liu, Yubin & Zhou, Jie & Dong, Weiwei, 2017. "Models for forecasting growth trends in renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1169-1178.
    5. Shaoxiong Li & Le Liu & Changhai Peng, 2020. "A Review of Performance-Oriented Architectural Design and Optimization in the Context of Sustainability: Dividends and Challenges," Sustainability, MDPI, vol. 12(4), pages 1-36, February.
    6. Juaidi, Adel & Montoya, Francisco G. & Gázquez, Jose A. & Manzano-Agugliaro, Francisco, 2016. "An overview of energy balance compared to sustainable energy in United Arab Emirates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1195-1209.
    7. Raja Jayaraman & Danilo Liuzzi & Cinzia Colapinto & Tufail Malik, 2017. "A fuzzy goal programming model to analyze energy, environmental and sustainability goals of the United Arab Emirates," Annals of Operations Research, Springer, vol. 251(1), pages 255-270, April.
    8. Raja Jayaraman & Cinzia Colapinto & Danilo Liuzzi & Davide Torre, 2017. "Planning sustainable development through a scenario-based stochastic goal programming model," Operational Research, Springer, vol. 17(3), pages 789-805, October.
    9. Jinrong Wu & Su Nguyen & Damminda Alahakoon & Daswin De Silva & Nishan Mills & Prabod Rathnayaka & Harsha Moraliyage & Andrew Jennings, 2024. "A Comparative Analysis of Machine Learning-Based Energy Baseline Models across Multiple Building Types," Energies, MDPI, vol. 17(6), pages 1-18, March.
    10. Zhang, Chengyu & Ma, Liangdong & Luo, Zhiwen & Han, Xing & Zhao, Tianyi, 2024. "Forecasting building plug load electricity consumption employing occupant-building interaction input features and bidirectional LSTM with improved swarm intelligent algorithms," Energy, Elsevier, vol. 288(C).
    11. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    12. Kazimierz Kawa & Rafał Mularczyk & Waldemar Bauer & Katarzyna Grobler-Dębska & Edyta Kucharska, 2024. "Prediction of Energy Consumption on Example of Heterogenic Commercial Buildings," Energies, MDPI, vol. 17(13), pages 1-16, June.
    13. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    14. Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.
    15. Giacomo Chiesa & Andrea Acquaviva & Mario Grosso & Lorenzo Bottaccioli & Maurizio Floridia & Edoardo Pristeri & Edoardo Maria Sanna, 2019. "Parametric Optimization of Window-to-Wall Ratio for Passive Buildings Adopting A Scripting Methodology to Dynamic-Energy Simulation," Sustainability, MDPI, vol. 11(11), pages 1-30, May.
    16. Saurbayeva, Assemgul & Memon, Shazim Ali & Kim, Jong, 2023. "Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones," Energy, Elsevier, vol. 278(PB).
    17. Fu, Chun & Miller, Clayton, 2022. "Using Google Trends as a proxy for occupant behavior to predict building energy consumption," Applied Energy, Elsevier, vol. 310(C).
    18. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    19. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    20. Tian, Shen & Shao, Shuangquan & Liu, Bin, 2019. "Investigation on transient energy consumption of cold storages: Modeling and a case study," Energy, Elsevier, vol. 180(C), pages 1-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8529-:d:605137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.