IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8278-d600570.html
   My bibliography  Save this article

A Win–Win Scenario for Agricultural Green Development and Farmers’ Agricultural Income: An Empirical Analysis Based on the EKC Hypothesis

Author

Listed:
  • Yuanying Chi

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China)

  • Yangmei Xu

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China)

  • Xu Wang

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China)

  • Feng Jin

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China)

  • Jialin Li

    (State Power Investment Group Co., Ltd., Beijing 100029, China)

Abstract

Due to severe resource and environmental constraints, agricultural green development is a vital step for the low-carbon development of China. How to achieve the goal of a win–win scenario that simultaneously improves agricultural green total factor productivity (GTFP) and farmers’ agricultural income was the main focus of this study. Based on the panel dataset for 31 provinces in China from 2000 to 2018, this study calculated the agricultural GTFP using the global Malmquist–Luenberger (GML) index to measure the green development of agriculture. Furthermore, this study investigated the relationship between the agricultural GTFP and agricultural income in an environmental Kuznets curve (EKC) framework, together with the key factors affecting agricultural GTFP. The main results show that, first, driven by technical progress, the agricultural GTFP gradually increased across the country, while there existed a certain degree of heterogeneity in the growth of different regions. Second, the relationships between the agricultural GTFP and agricultural income exhibited a significant U-shape for the whole country and the four regions, indicating that a win–win scenario can be achieved between green development and income level. Third, industrialization and urbanization negatively affected agricultural GTFP, capital deepening played a positive role, and due to the mediated effect of capital deepening, the outflow of the agricultural labor force did not cause substantial harm to agricultural GTFP. The findings of our study provide useful policy implications for the promotion and development of agriculture in China.

Suggested Citation

  • Yuanying Chi & Yangmei Xu & Xu Wang & Feng Jin & Jialin Li, 2021. "A Win–Win Scenario for Agricultural Green Development and Farmers’ Agricultural Income: An Empirical Analysis Based on the EKC Hypothesis," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8278-:d:600570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8278/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8278/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Zuankuo & Xin, Li, 2019. "Has China's Belt and Road Initiative promoted its green total factor productivity?——Evidence from primary provinces along the route," Energy Policy, Elsevier, vol. 129(C), pages 360-369.
    2. Cuiping Xu & H. Holly Wang & Qinghua Shi, 2012. "Farmers’ Income and Production Responses to Rural Taxation Reform in Three Regions in China," Journal of Agricultural Economics, Wiley Blackwell, vol. 63(2), pages 291-309, June.
    3. Kumar, Surender, 2006. "Environmentally sensitive productivity growth: A global analysis using Malmquist-Luenberger index," Ecological Economics, Elsevier, vol. 56(2), pages 280-293, February.
    4. Wang, Xiaxin & Shen, Yan, 2014. "The effect of China's agricultural tax abolition on rural families' incomes and production," China Economic Review, Elsevier, vol. 29(C), pages 185-199.
    5. Li, Bo & Ding, Junqi & Wang, Jieqiong & Zhang, Biao & Zhang, Lingxian, 2021. "Key factors affecting the adoption willingness, behavior, and willingness-behavior consistency of farmers regarding photovoltaic agriculture in China," Energy Policy, Elsevier, vol. 149(C).
    6. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    7. Andres Trujillo-Barrera & Joost M. E. Pennings & Dianne Hofenk, 2016. "Understanding producers' motives for adopting sustainable practices: the role of expected rewards, risk perception and risk tolerance," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(3), pages 359-382.
    8. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    9. Zhaoliang Li & Minghao Jin & Jianwei Cheng, 2021. "Economic growth of green agriculture and its influencing factors in china: Based on emergy theory and spatial econometric model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15494-15512, October.
    10. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    11. Osman Zaim & Fatma Taskin, 2000. "A Kuznets Curve in Environmental Efficiency: An Application on OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 17(1), pages 21-36, September.
    12. van Wesenbeeck, C.F.A. & Keyzer, M.A. & van Veen, W.C.M. & Qiu, H., 2021. "Can China's overuse of fertilizer be reduced without threatening food security and farm incomes?," Agricultural Systems, Elsevier, vol. 190(C).
    13. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    14. Qiu, Guo Yu & Zhang, Xiaonan & Yu, Xiaohui & Zou, Zhendong, 2018. "The increasing effects in energy and GHG emission caused by groundwater level declines in North China’s main food production plain," Agricultural Water Management, Elsevier, vol. 203(C), pages 138-150.
    15. Smriti Mallapaty, 2020. "How China could be carbon neutral by mid-century," Nature, Nature, vol. 586(7830), pages 482-483, October.
    16. Yongrok Choi & Dong-hyun Oh & Ning Zhang, 2015. "Environmentally sensitive productivity growth and its decompositions in China: a metafrontier Malmquist–Luenberger productivity index approach," Empirical Economics, Springer, vol. 49(3), pages 1017-1043, November.
    17. Al-Amin, A.K.M. Abdullah & Hossain, M.J., 2019. "Impact of non-farm income on welfare in rural Bangladesh: Multilevel mixed-effects regression approach," World Development Perspectives, Elsevier, vol. 13(C), pages 95-102.
    18. Yuan, Shen & Peng, Shaobing, 2017. "Trends in the economic return on energy use and energy use efficiency in China's crop production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 836-844.
    19. Jiang, Yufan & Wang, Hongyan & Liu, Zuankuo, 2021. "The impact of the free trade zone on green total factor productivity ——evidence from the shanghai pilot free trade zone," Energy Policy, Elsevier, vol. 148(PB).
    20. Rashid Gill, Abid & Viswanathan, Kuperan K. & Hassan, Sallahuddin, 2018. "The Environmental Kuznets Curve (EKC) and the environmental problem of the day," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1636-1642.
    21. Churchill, Sefa Awaworyi & Inekwe, John & Ivanovski, Kris & Smyth, Russell, 2018. "The Environmental Kuznets Curve in the OECD: 1870–2014," Energy Economics, Elsevier, vol. 75(C), pages 389-399.
    22. Shen, Zhiyang & Baležentis, Tomas & Ferrier, Gary D., 2019. "Agricultural productivity evolution in China: A generalized decomposition of the Luenberger-Hicks-Moorsteen productivity indicator," China Economic Review, Elsevier, vol. 57(C).
    23. Adetutu, Morakinyo O. & Ajayi, Victor, 2020. "The impact of domestic and foreign R&D on agricultural productivity in sub-Saharan Africa," World Development, Elsevier, vol. 125(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoqun Ma & Minjuan Li & Yuxi Luo & Tuanbiao Jiang, 2023. "Agri-Ecological Policy, Human Capital and Agricultural Green Technology Progress," Agriculture, MDPI, vol. 13(5), pages 1-14, April.
    2. Fan, Min & Zhou, Yun & Lu, Zhixi & Gao, Sen, 2024. "Fintech's impact on green productivity in China: Role of fossil fuel energy structure, environmental regulations, government expenditure, and R&D investment," Resources Policy, Elsevier, vol. 91(C).
    3. Antonella Vastola & Mauro Viccaro & Valeria Grippo & Francesco Genovese & Severino Romano & Mario Cozzi, 2023. "The Decoupling Effect in Italian Agricultural Waste: An Empirical Analysis," Sustainability, MDPI, vol. 15(24), pages 1-14, December.
    4. Pei Xu & Zehu Jin & Huan Tang, 2022. "Influence Paths and Spillover Effects of Agricultural Agglomeration on Agricultural Green Development," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    5. Yanling Chen & Weiwei Fu & Jingyun Wang, 2022. "Evaluation and Influencing Factors of China’s Agricultural Productivity from the Perspective of Environmental Constraints," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    6. Liping Zhu & Rui Shi & Lincheng Mi & Pu Liu & Guofeng Wang, 2022. "Spatial Distribution and Convergence of Agricultural Green Total Factor Productivity in China," IJERPH, MDPI, vol. 19(14), pages 1-16, July.
    7. Zhuohui Yu & Qingning Lin & Changli Huang, 2022. "Re-Measurement of Agriculture Green Total Factor Productivity in China from a Carbon Sink Perspective," Agriculture, MDPI, vol. 12(12), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuku Chuku & Victor Ajayi, 2022. "Working Paper 363 - Growing Green: Enablers and Barriers for Africa," Working Paper Series 2489, African Development Bank.
    2. Badunenko, Oleg & Galeotti, Marzio & Hunt, Lester C., 2021. "Better to grow or better to improve? Measuring environmental efficiency in OECD countries with a Stochastic Environmental Kuznets Frontier," FEEM Working Papers 316226, Fondazione Eni Enrico Mattei (FEEM).
    3. Maranzano, Paolo & Cerdeira Bento, Joao Paulo & Manera, Matteo, 2021. "The Role of Education and Income Inequality on Environmental Quality. A Panel Data Analysis of the EKC Hypothesis on OECD," FEEM Working Papers 310225, Fondazione Eni Enrico Mattei (FEEM).
    4. Yavuz Selman DUMAN & Adnan KASMAN, 2017. "The Role of International Trade and Urbanization on Environmental Technical Efficiency in EU Member and Candidate Countries," Ege Academic Review, Ege University Faculty of Economics and Administrative Sciences, vol. 17(4), pages 481-491.
    5. Chen, Xiang & Chen, Yong & Huang, Wenli & Zhang, Xuping, 2023. "A new Malmquist-type green total factor productivity measure: An application to China," Energy Economics, Elsevier, vol. 117(C).
    6. Haiyan Deng & Ge Bai & Kristiaan Kerstens & Zhiyang Shen, 2023. "Comparing green productivity under convex and nonconvex technologies: Which is a robust approach consistent with energy structure?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(8), pages 4377-4394, December.
    7. Lv, Chengchao & Song, Jie & Lee, Chien-Chiang, 2022. "Can digital finance narrow the regional disparities in the quality of economic growth? Evidence from China," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 502-521.
    8. Yu Hao & Shang Gao & Yunxia Guo & Zhiqiang Gai & Haitao Wu, 2021. "Measuring the nexus between economic development and environmental quality based on environmental Kuznets curve: a comparative study between China and Germany for the period of 2000–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16848-16873, November.
    9. Pan Rao & Xiaojin Liu & Shubin Zhu & Xiaolan Kang & Xinglei Zhao & Fangting Xie, 2022. "Does the Application of ICTs Improve the Efficiency of Agricultural Carbon Reduction? Evidence from Broadband Adoption in Rural China," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    10. Jiang, Yufan & Wang, Hongyan & Liu, Zuankuo, 2021. "The impact of the free trade zone on green total factor productivity ——evidence from the shanghai pilot free trade zone," Energy Policy, Elsevier, vol. 148(PB).
    11. Badunenko, Oleg & Galeotti, Marzio & Hunt, Lester C., 2023. "Better to grow or better to improve? Measuring environmental efficiency in OECD countries with a stochastic environmental Kuznets frontier (SEKF)," Energy Economics, Elsevier, vol. 121(C).
    12. Yongyi Cheng & Liheng Lu & Tianyuan Shao & Manhong Shen & Laiqun Jin, 2018. "Decomposition Analysis of Factors Affecting Changes in Industrial Wastewater Emission Intensity in China: Based on a SSBM-GMI Approach," IJERPH, MDPI, vol. 15(12), pages 1-23, December.
    13. Liu, Wei & Zhan, Jinyan & Zhao, Fen & Wang, Pei & Li, Zhihui & Teng, Yanmin, 2018. "Changing trends and influencing factors of energy productivity growth: A case study in the Pearl River Delta Metropolitan Region," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 1-9.
    14. Abou-Ali, Hala & Abdelfattah, Yasmine M., 2013. "Integrated paradigm for sustainable development: A panel data study," Economic Modelling, Elsevier, vol. 30(C), pages 334-342.
    15. Li, Mingquan & Wang, Qi, 2014. "International environmental efficiency differences and their determinants," Energy, Elsevier, vol. 78(C), pages 411-420.
    16. Yaqiong Wang & Guanghui Yuan & Ying Yan & Xueliang Zhang, 2020. "Evaluation of Sustainable Urban Development under Environmental Constraints: A Case Study of Jiangsu Province, China," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    17. Chiu, Ching-Ren & Liou, Je-Liang & Wu, Pei-Ing & Fang, Chen-Ling, 2012. "Decomposition of the environmental inefficiency of the meta-frontier with undesirable output," Energy Economics, Elsevier, vol. 34(5), pages 1392-1399.
    18. Li, Yaya & Zhang, Yuru & Pan, An & Han, Minchun & Veglianti, Eleonora, 2022. "Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms," Technology in Society, Elsevier, vol. 70(C).
    19. Iftikhar Yasin & Nawaz Ahmad & Muhammad Aslam Chaudhary, 2021. "The impact of financial development, political institutions, and urbanization on environmental degradation: evidence from 59 less-developed economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6698-6721, May.
    20. Li, Hai-ling & Zhu, Xue-hong & Chen, Jin-yu & Jiang, Fei-tao, 2019. "Environmental regulations, environmental governance efficiency and the green transformation of China's iron and steel enterprises," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8278-:d:600570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.