IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04273632.html
   My bibliography  Save this paper

Comparing green productivity under convex and nonconvex technologies: Which is a robust approach consistent with energy structure?

Author

Listed:
  • Haiyan Deng
  • Ge Bai
  • Kristiaan Kerstens

    (LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique)

  • Zhiyang Shen

    (LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique)

Abstract

Total factor productivity is used to explore the input–output efficiency of the economy and the driving factors behind economic growth. Although scholars have researched the total factor productivity approach, comparisons among different models in empirical research are rare and few scholars have focused on worldwide total factor productivity gains. Using convex and nonconvex technologies, this contribution investigates green productivity gains of 129 worldwide countries during 2000–2019 based on three popular productivity measures, namely, Luenberger–Hicks–Moorsteen indicator, Luenberger productivity indicator, and Malmquist–Luenberger index, respectively. Inspired by a metafrontier approach, we compare their productivity evolutions with the energy structure among 121 economies. A negative relationship is expected between the change in the proportion of fossil fuel energy consumption and green productivity. Our results show that the Luenberger–Hicks–Moorsteen productivity indicator under nonconvex technologies is a more convincing productivity measure when considering undesirable outputs in production technology.

Suggested Citation

  • Haiyan Deng & Ge Bai & Kristiaan Kerstens & Zhiyang Shen, 2023. "Comparing green productivity under convex and nonconvex technologies: Which is a robust approach consistent with energy structure?," Post-Print hal-04273632, HAL.
  • Handle: RePEc:hal:journl:hal-04273632
    DOI: 10.1002/mde.3955
    Note: View the original document on HAL open archive server: https://hal.science/hal-04273632
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04273632/document
    Download Restriction: no

    File URL: https://libkey.io/10.1002/mde.3955?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kerstens, Kristiaan & O’Donnell, Christopher & Van de Woestyne, Ignace, 2019. "Metatechnology frontier and convexity: A restatement," European Journal of Operational Research, Elsevier, vol. 275(2), pages 780-792.
    2. Feng, Guohua & Serletis, Apostolos, 2014. "Undesirable outputs and a primal Divisia productivity index based on the directional output distance function," Journal of Econometrics, Elsevier, vol. 183(1), pages 135-146.
    3. Shahbaz, Muhammad & Raghutla, Chandrashekar & Chittedi, Krishna Reddy & Jiao, Zhilun & Vo, Xuan Vinh, 2020. "The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index," Energy, Elsevier, vol. 207(C).
    4. Yuan, Qianqian & Baležentis, Tomas & Shen, Zhiyang & Streimikiene, Dalia, 2021. "Economic and environmental performance of the belt and road countries under convex and nonconvex production technologies," Journal of Asian Economics, Elsevier, vol. 75(C).
    5. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    6. Zhouyi Wu & Chuncao Wang & Bin He & Siying Yang, 2022. "State‐owned industrial enterprises' non‐R&D innovation and regional total factor productivity: An analysis based on the panel co‐integration method," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(8), pages 3338-3347, December.
    7. Coggins, Jay S. & Swinton, John R., 1996. "The Price of Pollution: A Dual Approach to Valuing SO2Allowances," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 58-72, January.
    8. Rolf Färe & Shawna Grosskopf & Carl A Pasurka, Jr., 2001. "Accounting for Air Pollution Emissions in Measures of State Manufacturing Productivity Growth," Journal of Regional Science, Wiley Blackwell, vol. 41(3), pages 381-409, August.
    9. Briec, Walter & Dumas, Audrey & Kerstens, Kristiaan & Stenger, Agathe, 2022. "Generalised commensurability properties of efficiency measures: Implications for productivity indicators," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1481-1492.
    10. Jin, Qianying & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2020. "Metafrontier productivity indices: Questioning the common convexification strategy," European Journal of Operational Research, Elsevier, vol. 283(2), pages 737-747.
    11. W. Briec & K. Kerstens, 2009. "Infeasibility and Directional Distance Functions with Application to the Determinateness of the Luenberger Productivity Indicator," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 55-73, April.
    12. Boussemart, Jean-Philippe & Ferrier, Gary D. & Leleu, Hervé & Shen, Zhiyang, 2020. "An expanded decomposition of the Luenberger productivity indicator with an application to the Chinese healthcare sector," Omega, Elsevier, vol. 91(C).
    13. repec:bla:scandj:v:98:y:1996:i:2:p:303-13 is not listed on IDEAS
    14. Romer, Paul M, 1990. "Are Nonconvexities Important for Understanding Growth?," American Economic Review, American Economic Association, vol. 80(2), pages 97-103, May.
    15. Watanabe, Michio & Tanaka, Katsuya, 2007. "Efficiency analysis of Chinese industry: A directional distance function approach," Energy Policy, Elsevier, vol. 35(12), pages 6323-6331, December.
    16. W. Briec, 1997. "A Graph-Type Extension of Farrell Technical Efficiency Measure," Journal of Productivity Analysis, Springer, vol. 8(1), pages 95-110, March.
    17. Wang, Qunwei & Zhao, Zengyao & Zhou, Peng & Zhou, Dequn, 2013. "Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach," Economic Modelling, Elsevier, vol. 35(C), pages 283-289.
    18. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    19. Subhash C. Ray & Kankana Mukherjee & Anand Venkatesh, 2018. "Nonparametric measures of efficiency in the presence of undesirable outputs: a by-production approach," Empirical Economics, Springer, vol. 54(1), pages 31-65, February.
    20. Kerstens, Kristiaan & Shen, Zhiyang & Van de Woestyne, Ignace, 2018. "Comparing Luenberger and Luenberger-Hicks-Moorsteen productivity indicators: How well is total factor productivity approximated?," International Journal of Production Economics, Elsevier, vol. 195(C), pages 311-318.
    21. Hailu, Atakelty & Veeman, Terrence S., 2000. "Environmentally Sensitive Productivity Analysis of the Canadian Pulp and Paper Industry, 1959-1994: An Input Distance Function Approach," Journal of Environmental Economics and Management, Elsevier, vol. 40(3), pages 251-274, November.
    22. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    23. Walter Briec & Kristiaan Kerstens, 2004. "A Luenberger-Hicks-Moorsteen productivity indicator: its relation to the Hicks-Moorsteen productivity index and the Luenberger productivity indicator," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(4), pages 925-939, May.
    24. Hirofumi Fukuyama & William L. Weber, 2017. "Measuring bank performance with a dynamic network Luenberger indicator," Annals of Operations Research, Springer, vol. 250(1), pages 85-104, March.
    25. Fare, Rolf, et al, 1993. "Derivation of Shadow Prices for Undesirable Outputs: A Distance Function Approach," The Review of Economics and Statistics, MIT Press, vol. 75(2), pages 374-380, May.
    26. A. Abad & P. Ravelojaona, 2022. "A generalization of environmental productivity analysis," Journal of Productivity Analysis, Springer, vol. 57(1), pages 61-78, February.
    27. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    28. Robert G. Chambers, 2002. "Exact nonradial input, output, and productivity measurement," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 20(4), pages 751-765.
    29. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    30. Rath, Badri Narayan & Akram, Vaseem & Bal, Debi Prasad & Mahalik, Mantu Kumar, 2019. "Do fossil fuel and renewable energy consumption affect total factor productivity growth? Evidence from cross-country data with policy insights," Energy Policy, Elsevier, vol. 127(C), pages 186-199.
    31. Wang, Yun & Sun, Xiaohua & Guo, Xu, 2019. "Environmental regulation and green productivity growth: Empirical evidence on the Porter Hypothesis from OECD industrial sectors," Energy Policy, Elsevier, vol. 132(C), pages 611-619.
    32. Kumar, Surender, 2006. "Environmentally sensitive productivity growth: A global analysis using Malmquist-Luenberger index," Ecological Economics, Elsevier, vol. 56(2), pages 280-293, February.
    33. Finn R. Førsund, 2018. "Multi-equation modelling of desirable and undesirable outputs satisfying the materials balance," Empirical Economics, Springer, vol. 54(1), pages 67-99, February.
    34. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    35. Walter Briec & Audrey Dumas & Kristiaan Kerstens & Agathe Stenger, 2022. "Generalised commensurability properties of efficiency measures: Implications for productivity indicators," Post-Print hal-03702639, HAL.
    36. Safiullah, Md, 2021. "Financial stability efficiency of Islamic and conventional banks," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    37. Zhang, Ning & Wei, Xiao, 2015. "Dynamic total factor carbon emissions performance changes in the Chinese transportation industry," Applied Energy, Elsevier, vol. 146(C), pages 409-420.
    38. Bert Balk & Rolf Färe & Shawna Grosskopf & Dimitris Margaritis, 2008. "Exact relations between Luenberger productivity indicators and Malmquist productivity indexes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(1), pages 187-190, April.
    39. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    40. Shen, Zhiyang & Baležentis, Tomas & Ferrier, Gary D., 2019. "Agricultural productivity evolution in China: A generalized decomposition of the Luenberger-Hicks-Moorsteen productivity indicator," China Economic Review, Elsevier, vol. 57(C).
    41. Angus Deaton, 2021. "COVID-19 and Global Income Inequality," NBER Working Papers 28392, National Bureau of Economic Research, Inc.
    42. Yan Li & Chunlu Liu, 2010. "Malmquist indices of total factor productivity changes in the Australian construction industry," Construction Management and Economics, Taylor & Francis Journals, vol. 28(9), pages 933-945.
    43. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomas Balezentis & Kristiaan Kerstens & Zhiyang Shen, 2022. "Economic and Environmental Decomposition of Luenberger-Hicks-Moorsteen Total Factor Productivity Indicator: Empirical Analysis of Chinese Textile Firms With a Focus on Reporting Infeasibilities and Qu," Post-Print hal-03833245, HAL.
    2. Frederic Ang & Kristiaan Kerstens & Jafar Sadeghi, 2023. "Energy productivity and greenhouse gas emission intensity in Dutch dairy farms: A Hicks–Moorsteen by‐production approach under non‐convexity and convexity with equivalence results," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(2), pages 492-509, June.
    3. Arnaud Abad & Paola Ravelojaona, 2020. "A Generalization of Environmental Productivity Analysis," Working Papers hal-02964799, HAL.
    4. Chen, Xiang & Chen, Yong & Huang, Wenli & Zhang, Xuping, 2023. "A new Malmquist-type green total factor productivity measure: An application to China," Energy Economics, Elsevier, vol. 117(C).
    5. A. Abad & P. Ravelojaona, 2017. "Exponential environmental productivity index and indicators," Journal of Productivity Analysis, Springer, vol. 48(2), pages 147-166, December.
    6. Stefano NASINI & Rabia NESSAH, 2021. "Endogenous Learning in Multi-Sector Economies," Working Papers 2021-EQM-08, IESEG School of Management, revised Oct 2023.
    7. Briec, Walter & Dumas, Audrey & Kerstens, Kristiaan & Stenger, Agathe, 2022. "Generalised commensurability properties of efficiency measures: Implications for productivity indicators," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1481-1492.
    8. Mahmood Mehdiloo & Jafar Sadeghi & Kristiaan Kerstens, 2024. "Top Down Axiomatic Modeling of Metatechnologies and Evaluating Directional Economic Efficiency," Working Papers 2024-EQM-03, IESEG School of Management.
    9. Aparicio, Juan & Kapelko, Magdalena & Zofío, José L., 2020. "The measurement of environmental economic inefficiency with pollution-generating technologies," Resource and Energy Economics, Elsevier, vol. 62(C).
    10. Manello, Alessandro, 2017. "Productivity growth, environmental regulation and win–win opportunities: The case of chemical industry in Italy and Germany," European Journal of Operational Research, Elsevier, vol. 262(2), pages 733-743.
    11. Pastor, Jesus T. & Lovell, C.A. Knox & Aparicio, Juan, 2020. "Defining a new graph inefficiency measure for the proportional directional distance function and introducing a new Malmquist productivity index," European Journal of Operational Research, Elsevier, vol. 281(1), pages 222-230.
    12. Ching-Ren Chiu & Ming-Chung Chang & Jin-Li Hu, 2022. "Energy intensity improvement and energy productivity changes: an analysis of BRICS and G7 countries," Journal of Productivity Analysis, Springer, vol. 57(3), pages 297-311, June.
    13. Ke Wang & Yujiao Xian & Chia-Yen Lee & Yi-Ming Wei & Zhimin Huang, 2019. "On selecting directions for directional distance functions in a non-parametric framework: a review," Annals of Operations Research, Springer, vol. 278(1), pages 43-76, July.
    14. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    15. Wu, Yinyin & Yu, Jie & Song, Malin & Chen, Jiandong & Hou, Wenxuan, 2021. "Shadow prices of industrial air pollutant emissions in China," Economic Modelling, Elsevier, vol. 94(C), pages 726-736.
    16. Niu, Yiran & Boussemart, Jean-Philippe & Shen, Zhiyang & Vardanyan, Michael, 2024. "Performance evaluation using multi-stage production frameworks: Assessing the tradeoffs among the economic, environmental, and social well-being," European Journal of Operational Research, Elsevier, vol. 318(3), pages 1000-1013.
    17. Frederic Ang & Stephen J. Ramsden, 2024. "Analysing determinate components of an approximated Luenberger–Hicks–Moorsteen productivity indicator: An application to German dairy‐processing firms," Agribusiness, John Wiley & Sons, Ltd., vol. 40(2), pages 349-370, April.
    18. Carlos Barros & Hercules Haralambides & Mohamed Hussain & Nicolas Perpoch, 2011. "Seaport Efficiency and Productivity Growth," Chapters, in: Kevin Cullinane (ed.), International Handbook of Maritime Economics, chapter 17, Edward Elgar Publishing.
    19. Arnaud Abad & Paola Ravelojaona, 2022. "A generalization of environmental productivity analysis," Post-Print hal-03592375, HAL.
    20. Cui, Lixin & Dong, Ruxue & Mu, Yunguo & Shen, Zhiyang & Xu, Jiatong, 2022. "How policy preferences affect the carbon shadow price in the OECD," Applied Energy, Elsevier, vol. 311(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04273632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.