IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p8072-d597460.html
   My bibliography  Save this article

Effects of Climate Change on Cultivation Patterns and Climate Suitability of Spring Maize in Inner Mongolia

Author

Listed:
  • Xiujuan Yang

    (College of Agronomy, Inner Mongolia Agricultural University, No.275, XinJian East Street, Hohhot 010019, China)

  • Jiying Sun

    (College of Agronomy, Inner Mongolia Agricultural University, No.275, XinJian East Street, Hohhot 010019, China)

  • Julin Gao

    (College of Agronomy, Inner Mongolia Agricultural University, No.275, XinJian East Street, Hohhot 010019, China)

  • Shuaishuai Qiao

    (College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Saihan District, Hohhot 010018, China)

  • Baolin Zhang

    (College of Chemistry and Environmental Sciences, Inner Mongolia Normal University, Hohhot 010020, China)

  • Haizhu Bao

    (College of Agronomy, Inner Mongolia Agricultural University, No.275, XinJian East Street, Hohhot 010019, China)

  • Xinwei Feng

    (Taiyuan Institute of Water Resources and Water Conservation Research, Taiyuan 030002, China)

  • Songyu Wang

    (The Industrial Crop Institute, Shanxi Agricultural University, 81 Long Cheng Street, Xiaodian District, Taiyuan 030031, China)

Abstract

Climate change has caused significant alterations in crop cultivation patterns and has affected crop suitability as well as its production. In this study, we investigated the changes in cultivation patterns and climate suitability of spring maize in Inner Mongolia from 1959 to 2018. We used the daily meteorological data from 50 weather stations and growth period data of spring maize from nine agrometeorological stations. In addition, the quantitative and interdecadal relationship between climate suitability of regions and climate-induced crop yield was analyzed using stepwise regression and cross wavelet transform. The results show that: (1) The planting boundaries of different spring maize maturity types extend to the north and east. In the middle part, early maturity maize has been replaced by medium maturity maize. The unsuitable planting areas in Northeast Inner Mongolia are decreasing, and the early maturity areas are increasing. (2) The climate suitability for spring maize planting areas is increasing. However, variations occur between different regions; the eastern region has the highest climate suitability ( S z = 0.67), but the overall trend is decreasing in this region. Whereas the central region has moderate suitability ( S z = 0.62), with a significantly increasing trend ( p < 0.05). The western region is lower ( S z = 0.60) and the trend is not significant. (3) Climate suitability and climate-induced yields are generally positively correlated. The primary factors affecting climate-induced yields are sunshine hours, followed by climate suitability, rainfall, and temperature. The cross-wavelet transform shows that climate suitability and climate-induced yield have greater periodicity in the late growth period. Appropriate expansion of the planting range of medium-late maturity spring maize can fully adapt to the impact of climate warming. Therefore, it is necessary to study suitability trends of regions to adopt comprehensive maize production measures.

Suggested Citation

  • Xiujuan Yang & Jiying Sun & Julin Gao & Shuaishuai Qiao & Baolin Zhang & Haizhu Bao & Xinwei Feng & Songyu Wang, 2021. "Effects of Climate Change on Cultivation Patterns and Climate Suitability of Spring Maize in Inner Mongolia," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:8072-:d:597460
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/8072/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/8072/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    2. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    3. Xiao, Dengpan & Liu, De Li & Wang, Bin & Feng, Puyu & Bai, Huizi & Tang, Jianzhao, 2020. "Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios," Agricultural Water Management, Elsevier, vol. 238(C).
    4. Zhijuan Liu & Xiaoguang Yang & Fu Chen & Enli Wang, 2013. "The effects of past climate change on the northern limits of maize planting in Northeast China," Climatic Change, Springer, vol. 117(4), pages 891-902, April.
    5. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingbin Feng & Mengxue Ke & Ting Zhou, 2022. "Spatio-Temporal Dynamics of Non-Grain Production of Cultivated Land in China," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    2. Caputo, Cesare & Cardin, Michel-Alexandre & Ge, Pudong & Teng, Fei & Korre, Anna & Antonio del Rio Chanona, Ehecatl, 2023. "Design and planning of flexible mobile Micro-Grids using Deep Reinforcement Learning," Applied Energy, Elsevier, vol. 335(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moon, Wanki, 2011. "Is agriculture compatible with free trade?," Ecological Economics, Elsevier, vol. 71(C), pages 13-24.
    2. Manab Das & Debashish Goswami & Anshuman & Alok Adholeya, 2014. "Land degradation, water scarcity and sustainability," Chapters, in: Raghbendra Jha & Raghav Gaiha & Anil B. Deolalikar (ed.), Handbook on Food, chapter 17, pages 443-461, Edward Elgar Publishing.
    3. Jiao, Fengli & Ding, Risheng & Du, Taisheng & Kang, Jian & Tong, Ling & Gao, Jia & Shao, Jie, 2024. "Multi-growth stage regulated deficit irrigation improves maize water productivity in an arid region of China," Agricultural Water Management, Elsevier, vol. 297(C).
    4. Ma, Shimeng & Ritsema, Coen J. & Wang, Sufen, 2024. "Achieving sustainable crop management: A holistic approach to crop competitiveness assessment and structure optimization with dual natural-social environmental impacts," Agricultural Systems, Elsevier, vol. 218(C).
    5. Morteza Akbari & Pantea Foroudi & Mohana Shahmoradi & Hamid Padash & Zahra Shahabaldini Parizi & Ala Khosravani & Pouria Ataei & Maria Teresa Cuomo, 2022. "The Evolution of Food Security: Where Are We Now, Where Should We Go Next?," Sustainability, MDPI, vol. 14(6), pages 1-27, March.
    6. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    7. Liu, Duan & Tang, Runcheng & Xie, Jun & Tian, Jingjing & Shi, Rui & Zhang, Kai, 2020. "Valuation of ecosystem services of rice–fish coculture systems in Ruyuan County, China," Ecosystem Services, Elsevier, vol. 41(C).
    8. Pelai, Ricardo & Hagerman, Shannon M. & Kozak, Robert, 2020. "Biotechnologies in agriculture and forestry: Governance insights from a comparative systematic review of barriers and recommendations," Forest Policy and Economics, Elsevier, vol. 117(C).
    9. Rahmani, Javad & Danesh-Yazdi, Mohammad, 2022. "Quantifying the impacts of agricultural alteration and climate change on the water cycle dynamics in a headwater catchment of Lake Urmia Basin," Agricultural Water Management, Elsevier, vol. 270(C).
    10. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    11. Katarina Arvidsson Segerkvist & Helena Hansson & Ulf Sonesson & Stefan Gunnarsson, 2021. "A Systematic Mapping of Current Literature on Sustainability at Farm-Level in Beef and Lamb Meat Production," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    12. Vainio, Annukka & Tienhaara, Annika & Haltia, Emmi & Hyvönen, Terho & Pyysiäinen, Jarkko & Pouta, Eija, 2021. "The legitimacy of result-oriented and action-oriented agri-environmental schemes: A comparison of farmers’ and citizens’ perceptions," Land Use Policy, Elsevier, vol. 107(C).
    13. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    14. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    15. Aude Ridier & Caroline Roussy & Karim Chaib, 2021. "Adoption of crop diversification by specialized grain farmers in south-western France: evidence from a choice-modelling experiment," Review of Agricultural, Food and Environmental Studies, Springer, vol. 102(3), pages 265-283, September.
    16. Badir S. Alsaeed & Dexter V. L. Hunt & Soroosh Sharifi, 2022. "Sustainable Water Resources Management Assessment Frameworks (SWRM-AF) for Arid and Semi-Arid Regions: A Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    17. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    18. Diriba Shiferaw G., 2017. "Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role for Availability & Use Efficiency of Nutrients by Shallow Rooted Vegetable Crops - A Review," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 3(10), pages 78-93, 10-2017.
    19. Sheng Gong & Jason.S. Bergtold & Elizabeth Yeager, 2021. "Assessing the joint adoption and complementarity between in-field conservation practices of Kansas farmers," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-24, December.
    20. Seufert, Verena & Ramankutty, Navin & Mayerhofer, Tabea, 2017. "What is this thing called organic? – How organic farming is codified in regulations," Food Policy, Elsevier, vol. 68(C), pages 10-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:8072-:d:597460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.